Expansion of the functional capacities of electrostatic mirror analyzers for electron spectroscopy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289781

Keywords:

electron spectroscopy, spherical and cylindrical mirrors, energy analyzer

Abstract

Electron spectroscopy methods are widely used in scientific research and for technological purposes. The main element of spectrometers is an analyzer of charged particle beams. Electrostatic mirror systems are widely used due to their simpler practical realization. At their development two purposes were set: to improve the quality of spatial focusing of charged particles or to increase the value of linear energy dispersion. The objects of the study are electrostatic systems characterized by small sizes, simplicity of stabilization and localization of the working field and its shielding from the external electromagnetic disturbances. From all the known types of energy analyzers, suitable for the analysis of solid surfaces, preference is given to those that have good electron-optical properties, are simple in manufacture and operation. Therefore, spherical and cylindrical mirrors, which have become a basic tool for firms producing spectrometers, have been chosen as the object of study. The work solves the problem of expansion of the functional capacities of these systems by, firstly, combining several research methods in one device; and secondly, by solving specific narrower problems. A photoelectron or Auger spectrometer with an increased scanning area is proposed, where the initial angular opening of the beam 4° after passing a cylindrical mirror is increased to 10°, and the image smearing is reduced to 0.05 %. An Auger-electron spectrometer for analysis of rough surface has been developed, which allows to increase the probing depths by more than 5 times. A double filter type energy analyzer is calculated. Energy resolution was improved to 1.37 % by eliminating potential barrier smearing in low energy filter mode. Previously, the energy resolution was limited to 10 % due to this drawback

Author Biography

Zhanar Kambarova, Karaganda Buketov University

PhD in Physics, Associated Professor

Department of Physics and Nanotechnology

References

  1. Greczynski, G., Hultman, L. (2020). X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Progress in Materials Science, 107, 100591. doi: https://doi.org/10.1016/j.pmatsci.2019.100591
  2. Fadley, C. S. (2009). X-ray photoelectron spectroscopy: From origins to future directions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 601 (1-2), 8–31. doi:https://doi.org/10.1016/j.nima.2008.12.189
  3. Bolli, E., Kaciulis, S., Mezzi, A. (2020). ESCA as a Tool for Exploration of Metals’ Surface. Coatings, 10 (12), 1182. doi: https://doi.org/10.3390/coatings10121182
  4. Scheithauer, U. (2020). Experimental setups for XPS measurements beyond the instrumental lateral resolution limit. Surface and Interface Analysis, 52 (12), 1185–1190. doi: https://doi.org/10.1002/sia.6828
  5. Diehl, R. D., Ledieu, J., Ferralis, N., Szmodis, A. W., McGrath, R. (2003). Low-energy electron diffraction from quasicrystal surfaces. Journal of Physics: Condensed Matter, 15 (3), R63–R81. doi: https://doi.org/10.1088/0953-8984/15/3/201
  6. Schweizer, P., Denninger, P., Dolle, C., Spiecker, E. (2020). Low energy nano diffraction (LEND) – A versatile diffraction technique in SEM. Ultramicroscopy, 213, 112956. doi: https://doi.org/10.1016/j.ultramic.2020.112956
  7. Powell, C. J. (2003). Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (5), S42–S53. doi: https://doi.org/10.1116/1.1599862
  8. Unger, W. E. S., Wirth, T., Hodoroaba, V.-D. (2020). Auger electron spectroscopy. Characterization of Nanoparticles, 373–395. doi: https://doi.org/10.1016/b978-0-12-814182-3.00020-1
  9. Fletcher, J. S., Vickerman, J. C. (2012). Secondary Ion Mass Spectrometry: Characterizing Complex Samples in Two and Three Dimensions. Analytical Chemistry, 85 (2), 610–639. doi: https://doi.org/10.1021/ac303088m
  10. Brais, C. J., Ibañez, J. O., Schwartz, A. J., Ray, S. J. (2020). Recent advances in instrumental approaches to time‐of‐flight mass spectrometry. Mass Spectrometry Reviews, 40 (5), 647–669. doi: https://doi.org/10.1002/mas.21650
  11. Gurov, V. S., Saulebekov, A. O., Trubitsyn, A. A. (2015). Analytical, Approximate-Analytical, and Numerical Methods for Design of Energy Analyzers. Advances in Imaging and Electron Physics. doi: https://doi.org/10.1016/s1076-5670(15)00103-2
  12. Gorelik, V. (2023). Optimization of cylindrical mirror analyzer. Journal of Electron Spectroscopy and Related Phenomena, 264, 147315. doi: https://doi.org/10.1016/j.elspec.2023.147315
  13. Edwards, D. (2016). The segmented cylindrical mirror analyzer (CMA). Journal of Electron Spectroscopy and Related Phenomena, 209, 46–52. doi: https://doi.org/10.1016/j.elspec.2016.02.004
  14. Baranova, L. A. (2017). Improved cylindrical mirror energy analyzer. Technical Physics, 62 (3), 480–483. doi: https://doi.org/10.1134/s1063784217030057
  15. Guseinov, N. R., Ilyin, A. M. (2021). Electrostatic energy analyzer for nanotechnology applications. Journal of Electron Spectroscopy and Related Phenomena, 246, 147031. doi: https://doi.org/10.1016/j.elspec.2020.147031
  16. Kobayashi, E., Seo, J., Nambu, A., Mase, K. (2007). Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS). Surface Science, 601 (17), 3589–3592. doi: https://doi.org/10.1016/j.susc.2007.06.073
  17. Davydov, S. N., Danilov, M. M., Korablev, V. V. (1999). Spherical mirror analyzer as an instrument for electron coincidence spectroscopy. Technical Physics, 44 (1), 99–103. doi: https://doi.org/10.1134/1.1259259
  18. Artamonov, O. M., Samarin, S. N., Paolicelli, G., Stefani, G. (2003). The use of the time–energy dispersion in an electron energy analyzer. Journal of Electron Spectroscopy and Related Phenomena, 131-132, 105–116. doi: https://doi.org/10.1016/s0368-2048(03)00129-4
  19. Nesvidomin, A., Pylypaka, S., Volina, T., Kalenyk, M., Shuliak, I., Semirnenko, Y. et al. (2023). Constructing geometrical models of spherical analogs of the involute of a circle and cycloid. Eastern-European Journal of Enterprise Technologies, 4 (7 (124)), 6–12. doi: https://doi.org/10.15587/1729-4061.2023.284982
  20. Saulebekov, А. О. (2019). Development of energy analyzer of charged particles based on the basis non-uniform electrostatic field. Eurasian Physical Technical Journal, 16 (1), 24–29. doi: https://doi.org/10.31489/2019no1/24-29
  21. Kambarova, Z., Saulebekov, A. (2020). Development of a Mirror Energy Analyzer of Charged Particles Beams Based on a Modified Electrostatic Field. 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). doi: https://doi.org/10.1109/efre47760.2020.9242029
  22. Kambarova, Z., Saulebekov, A. (2020). Analyzer of Charged Particles Based on the Electrostatic Quadrupole-Cylindrical Field in the «Axis-Ring» Focusing Regime. 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). doi: https://doi.org/10.1109/efre47760.2020.9242088
  23. Kambarova, Zh. T., Trubitsyn, A. A., Saulebekov, A. O. (2018). Axially Symmetric Energy Analyzer Based on the Electrostatic Decapole-Cylindrical Field. Technical Physics, 63 (11), 1667–1671. doi: https://doi.org/10.1134/s1063784218110142
  24. Ashimbaeva, B. U., Chokin, K. Sh., Saulebekov, A. O., Kambarova, Zh. T. (2012). The combined energy analyzer composed of electrostatic mirror fields. Journal of Electron Spectroscopy and Related Phenomena, 185 (11), 518–522. doi: https://doi.org/10.1016/j.elspec.2012.10.008
  25. Ashimbayeva, B. U., Chokin, K. Sh., Saulebekov, A. O., Kambarova, Zh. T. (2012). Modelirovaniye elektrostaticheskoy sistemy iz tsilindricheskogo i giperbolicheskogo zerkal. Prikladnaya fizika (Applied Physics), 4, 73–78.
  26. Photoelectron spectrometer, ESCALAB Mk II by Vacuum Generators. Available at: https://jacobs.physik.uni-saarland.de/home/index.php?page=steinbeiss/home_cms_steinbeissdet3-1&navi=service
  27. Getman, A. (2018). Development of the technique for improving the structure of a magnetic field in the aperture of a quadrupole electromagnet with a superconducting winding. Eastern-European Journal of Enterprise Technologies, 5 (5 (95)), 6–12. doi: https://doi.org/10.15587/1729-4061.2018.142163
  28. Trubitsyn, A. A., Tolstoguzov, A. B., Saulebekov, A. O., Suvorov, D. V., Tarabrin, D. Yu., Kambarova, Zh. T., Kuksa, P. I. (2012). Proyektirovaniye dlinnofokusnogo ozhe-mikrozonda. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta, 42 (4 (1)), 54–59.
Expansion of the functional capacities of electrostatic mirror analyzers for electron spectroscopy

Downloads

Published

2023-10-31

How to Cite

Kambarova, Z. (2023). Expansion of the functional capacities of electrostatic mirror analyzers for electron spectroscopy. Eastern-European Journal of Enterprise Technologies, 5(5 (125), 53–61. https://doi.org/10.15587/1729-4061.2023.289781

Issue

Section

Applied physics