Devising procedures for design and verification calculations of the beam-wall with edge breaks under static and cyclic loads

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289986

Keywords:

beam-wall, broken edge, optimal design, low-cycle fatigue life, cyclic elastic-plastic deformations

Abstract

This paper considers a thin-walled steel beam-wall with broken edges, which is part of many structures. The wall of this beam consists of two prismatic parts with a straight transition from a lower wall height to a higher one, forming a broken upper edge together with the edges of the prismatic parts. The bottom straight edge of the wall is attached to the cladding.

The beam-wall is affected by static and cyclic nominal loads, which can cause the appearance of elastic-plastic deformations in the stress concentrator. This causes non-fulfillment of static strength and the appearance and growth of fatigue cracks.

In the current work, procedures of design and verification calculation of a steel beam-wall with fractured edges at elastic static and cyclic elastic-plastic deformation in the stress concentrator are proposed. The material of the beam is ideal elastic-plastic.

Features of the procedures are the possibility of optimal design under conditions of elastic and elastic-plastic deformation, using dependences only for optimal elastic design. A distinctive signature of the procedures is that, through Neiber's formula, elastic-plastic characteristics are not determined by known elastic ones, as usual, but vice versa. According to the established dependences for cyclic elastic-plastic deformations in the concentrator, the theoretical concentration coefficient is determined, which, in turn, is involved in determining the optimal geometric parameters.

The procedures give reliable results with nominal symmetrical cyclic loads up to 0.6 of the yield strength. This is because Naber's formula always yields conservative results, causing excess strength.

The procedures can be applied separately for stretching-compression and bending, and with their combined action

Author Biographies

Valerii Sokov, Admiral Makarov National University of Shipbuilding

Senior Lecturer

Department of Structural Mechanics and Ship Construction

Leontii Korostylov, Admiral Makarov National University of Shipbuilding

Doctor of Technical Sciences, Professor

Department of Structural Mechanics and Ship Construction

Oleksandr Shchedrolosiev, Admiral Makarov National University of Shipbuilding

Doctor of Technical Sciences, Professor

Department of Shipbuilding and Ship Repair

Hryhorii Sharun, Admiral Makarov National University of Shipbuilding

Senior Lecturer

Department of Structural Mechanics and Ship Construction

Serhii Klymenkov, Admiral Makarov National University of Shipbuilding

Senior Lecturer

Department of Structural Mechanics and Ship Construction

References

  1. Sokov, V. M. (2021). Elastic-plastic deformation of beam’s web with brek of edges. Scientific Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, 4, 13–23. doi: https://doi.org/10.32838/2663-5941/2021.4/03
  2. Sokov, V. M. (2022). Cyclic elastic-plastic deformation in the stress raiser of the beam-web with bend of edges. Materialy XIII mizhnar. nauk.-tekhn. konf. "Innovatsiyi v sudobuduvanni ta okeanotekhnitsi". Mykolaiv: NUK, С. 75–77. Available at: https://eir.nuos.edu.ua/items/c7eba9af-2b54-4d1f-89d0-f0b013af162a
  3. Rozvany, G. I. N. (1976). Optimal Design of Flexural Systems: Beams, Grillages, Slabs, Plates and Shells. Pergamon. doi: https://doi.org/10.1016/c2013-0-02754-5
  4. Banichuk, N. V. (1983). Problems and Methods of Optimal Structural Design. Springer, 313. doi: https://doi.org/10.1007/978-1-4613-3676-1
  5. Haftka, R. T., Gürdal, Z. (1992). Elements of Structural Optimization. Springer, 481. doi: https://doi.org/10.1007/978-94-011-2550-5
  6. MacBain, K. M., Spillers, W. R. (2009). Structural Optimization. Springer, 304. doi: https://doi.org/10.1007/978-0-387-95865-1
  7. Kaveh, A. (2014). Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, 426. doi: https://doi.org/10.1007/978-3-319-05549-7
  8. El-Sayed, M. E. M., Lund, E. H. (1990). Structural optimization with fatigue life constraints. Engineering Fracture Mechanics, 37 (6), 1149–1156. doi: https://doi.org/10.1016/0013-7944(90)90057-n
  9. Peng, D., Jones, R., Pitt, S. (2008). Three-dimensional structure optimal design for extending fatigue life by using biological algorithm. Theoretical and Applied Fracture Mechanics, 49 (1), 26–37. doi: https://doi.org/10.1016/j.tafmec.2007.10.005
  10. Holmberg, E., Torstenfelt, B., Klarbring, A. (2014). Fatigue constrained topology optimization. Structural and Multidisciplinary Optimization, 50 (2), 207–219. doi: https://doi.org/10.1007/s00158-014-1054-6
  11. Desmorat, B., Desmorat, R. (2008). Topology optimization in damage governed low cycle fatigue. Comptes Rendus Mécanique, 336 (5), 448–453. doi: https://doi.org/10.1016/j.crme.2008.01.001
  12. Cao, M., Duan, H., He, H., Liu, Y., Yue, S., Zhang, Z., Zhao, Y. (2022). Prediction model of low cycle fatigue life of 304 stainless steel based on genetic algorithm optimized BP neural network. Materials Research Express, 9 (7), 076511. doi: https://doi.org/10.1088/2053-1591/ac7cc0
  13. Sokov, V. M., Korostylov, L. I. (2010). Proektirovanie konstruktivnogo uzla korpusa sudna s uchetom tekhnologicheskikh faktorov. Zbirnyk naukovykh prats NUK, 5 (434), 3–10.
  14. Korostylev, L. I. (1998). Otsenka ustalostnoy prochnosti sudovykh korpusnykh konstruktsiy s kontsentratorami napryazheniy. Tr. vtoroy mezhdunar. konf. po sudostroeniyu. ISC’98. Sektsiya S. Sankt-Peterburg: TsNII im. Akad. A.N. Krylova, 160–167.
  15. Korostylev, L. I. (1998). Prakticheskaya realizatsiya eksperimental'no-teoreticheskogo metoda raschetnoy otsenki ustalostnoy dolgovechnosti sudovykh konstruktsiy. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho morskoho tekhnichnoho universytetu. Nikolaev, 3 (351), 3–9.
  16. Troschenko, V. T. (2006). Scattered fatigue damage of metals and alloys. Part 3. Deformationand energy-based criteria. Problemy prochnosti, 1, 5–31. Available at: http://dspace.nbuv.gov.ua/handle/123456789/47788
  17. Makhutov, N. A. (1981). Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsiy na prochnost'. Moscow: Mashinostroenie, 272.
Devising procedures for design and verification calculations of the beam-wall with edge breaks under static and cyclic loads

Downloads

Published

2023-10-31

How to Cite

Sokov, V., Korostylov, L., Shchedrolosiev, O., Sharun, H., & Klymenkov, S. (2023). Devising procedures for design and verification calculations of the beam-wall with edge breaks under static and cyclic loads. Eastern-European Journal of Enterprise Technologies, 5(7 (125), 23–33. https://doi.org/10.15587/1729-4061.2023.289986

Issue

Section

Applied mechanics