Determining the influence of raw milk protein composition on the yield of cheese and its nutrient content

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.292063

Keywords:

cheese yield, milk proteins, β-casein, A2 milk, nutrients

Abstract

Cheese production is a complex process that is influenced by many factors: protein:fat ratio, acidity, and type of rennet. An option for improving the profitability of the cheese industry is the genetic selection of dairy cows to produce milk with good rennet protein coagulation. The object of the study is the technology of cheeses made from milk from cows with different β-casein genotypes (А1А1, А1А2, А2А2). The subject of the study is the physical-chemical parameters of milk from cows with different genotypes for β-casein; yield of cheese from this milk and its quality indicators. Samples of Gouda cheese were produced according to traditional technology. The research established that the quality indicators of milk samples are typical for fresh cow's milk. The content of fat, protein, and dry matter in the milk of cows with the β-casein genotype A2A2 were slightly higher compared to A1A1 and A1A2. The study of the quality indicators of the cheese samples showed that the type of β-casein did not affect the organoleptic properties of the cheese. However, according to the content of the main chemical components, cheeses made from A1A2 milk had a higher content of dry matter and protein (61,6 % and 19,2 % on average, respectively) and a lower fat content (37.2 %). The amino acid profile of cheese from milk of cows with β-casein A1A2 and A2A2 genotypes showed a higher total content of amino acids – 14.89 mg/g and 13.84 mg/g, respectively. Calculations of cheese yield showed that cheese yield from milk of cows with β-casein genotype A1A2 was higher (mean value 13.1 %) than with A1A1 and A2A2. The obtained results are of practical importance, as it is possible to take into account how changes in the β-casein genotype in milk can affect the yield of cheese, and therefore, the profitability of production

Author Biographies

Volodymyr Ladyka, Sumy National Agrarian University

Doctor of Agricultural Sciences, Professor, Academician of NAAS

Rector

Natalia Bolgova, Sumy National Agrarian University

PhD, Associate Professor

Department of Technology and Food Safety

Tetiana Synenko, Sumy National Agrarian University

Doctor of Philosophy (PhD)

Department of Technology and Food Safety

Yuriy Skliarenko, Institute of Agriculture of the Northeast of the National Academy of Sciences of Ukraine

Doctor of Agricultural Sciences

Laboratory of Animal Husbandry and Fodder Production

Viktoriia Vechorka, Sumy National Agrarian University

Doctor of Agricultural Sciences, Professor

Department of Animal Genetics, Breeding and Biotechnology

References

  1. Nguyen, H. T. H., Schwendel, H., Harland, D., Day, L. (2018). Differences in the yoghurt gel microstructure and physicochemical properties of bovine milk containing A1A1 and A2A2 β-casein phenotypes. Food Research International, 112, 217–224. doi: https://doi.org/10.1016/j.foodres.2018.06.043
  2. Ladyka, V., Pavlenko, Y., Sklyarenko, Y. (2021). Uso del polimorfismo del gen de la β-caseína en términos de preservación del ganado lechero marrón. Archivos de Zootecnia, 70 (269), 88–94. doi: https://doi.org/10.21071/az.v70i269.5422
  3. Hohmann, L. G., Weimann, C., Scheper, C., Erhardt, G., König, S. (2021). Genetic diversity and population structure in divergent German cattle selection lines on the basis of milk protein polymorphisms. Archives Animal Breeding, 64 (1), 91–102. doi: https://doi.org/10.5194/aab-64-91-2021
  4. Bonfatti, V., Di Martino, G., Cecchinato, A., Vicario, D., Carnier, P. (2010). Effects of β-κ-casein (CSN2-CSN3) haplotypes and β-lactoglobulin (BLG) genotypes on milk production traits and detailed protein composition of individual milk of Simmental cows. Journal of Dairy Science, 93 (8), 3797–3808. doi: https://doi.org/10.3168/jds.2009-2778
  5. Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K. et al. (2004). Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. Journal of Dairy Science, 87 (6), 1641–1674. doi: https://doi.org/10.3168/jds.s0022-0302(04)73319-6
  6. Sebastiani, C., Arcangeli, C., Torricelli, M., Ciullo, M., D’avino, N., Cinti, G. et al. (2022). Marker-assisted selection of dairy cows for β-casein gene A2 variant. Italian Journal of Food Science, 34 (2), 21–27. doi: https://doi.org/10.15586/ijfs.v34i2.2178
  7. Daniloski, D., McCarthy, N. A., Vasiljevic, T. (2021). Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends in Food Science & Technology, 116, 681–700. doi: https://doi.org/10.1016/j.tifs.2021.08.003
  8. Raynes, J. K., Day, L., Augustin, M. A., Carver, J. A. (2015). Structural differences between bovine A1 and A2 β-casein alter micelle self-assembly and influence molecular chaperone activity. Journal of Dairy Science, 98 (4), 2172–2182. doi: https://doi.org/10.3168/jds.2014-8800
  9. Fernández-Rico, S., Mondragón, A. del C., López-Santamarina, A., Cardelle-Cobas, A., Regal, P., Lamas, A. et al. (2022). A2 Milk: New Perspectives for Food Technology and Human Health. Foods, 11 (16), 2387. doi: https://doi.org/10.3390/foods11162387
  10. He, M., Sun, J., Jiang, Z. Q., Yang, Y. X. (2017). Effects of cow’s milk beta-casein variants on symptoms of milk intolerance in Chinese adults: a multicentre, randomised controlled study. Nutrition Journal, 16 (1). doi: https://doi.org/10.1186/s12937-017-0275-0
  11. Jianqin, S., Leiming, X., Lu, X., Yelland, G. W., Ni, J., Clarke, A. J. (2015). Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutrition Journal, 15 (1). doi: https://doi.org/10.1186/s12937-016-0147-z
  12. Amatya Gorkhali, N., Sherpa, C., Koirala, P., Sapkota, S., Pokharel, B. R. (2021). The Global Scenario of A1, A2 β-Casein Variant in Cattle and its Impact on Human Health. Global Journal of Agricultural and Allied Sciences, 3 (1), 16–24. doi: https://doi.org/10.35251/gjaas.2021.003
  13. Truswell, A. S. (2005). The A2 milk case: a critical review. European Journal of Clinical Nutrition, 59 (5), 623–631. doi: https://doi.org/10.1038/sj.ejcn.1602104
  14. Kaskous, S. (2020). A1- and A2-Milk and Their Effect on Human Health. Journal of Food Engineering and Technology, 9 (1), 15–21. doi: https://doi.org/10.32732/jfet.2020.9.1.15
  15. Oliveira Mendes, M., Ferreira de Morais, M., Ferreira Rodrigues, J. (2019). A2A2 milk: Brazilian consumers’ opinions and effect on sensory characteristics of Petit Suisse and Minas cheeses. LWT, 108, 207–213. doi: https://doi.org/10.1016/j.lwt.2019.03.064
  16. Bittante, G., Penasa, M., Cecchinato, A. (2012). Invited review: Genetics and modeling of milk coagulation properties. Journal of Dairy Science, 95 (12), 6843–6870. doi: https://doi.org/10.3168/jds.2012-5507
  17. Vigolo, V., Visentin, E., Ballancin, E., Lopez-Villalobos, N., Penasa, M., De Marchi, M. (2023). β-Casein A1 and A2: Effects of polymorphism on the cheese-making process. Journal of Dairy Science, 106 (8), 5276–5287. doi: https://doi.org/10.3168/jds.2022-23072
  18. Bisutti, V., Pegolo, S., Giannuzzi, D., Mota, L. F. M., Vanzin, A., Toscano, A. et al. (2022). The β-casein (CSN2) A2 allelic variant alters milk protein profile and slightly worsens coagulation properties in Holstein cows. Journal of Dairy Science, 105 (5), 3794–3809. doi: https://doi.org/10.3168/jds.2021-21537
  19. Gustavsson, F., Buitenhuis, A. J., Glantz, M., Stålhammar, H., Lindmark-Månsson, H., Poulsen, N. A. et al. (2014). Impact of genetic variants of milk proteins on chymosin-induced gelation properties of milk from individual cows of Swedish Red dairy cattle. International Dairy Journal, 39 (1), 102–107. doi: https://doi.org/10.1016/j.idairyj.2014.05.007
  20. Vigolo, V., Franzoi, M., Penasa, M., De Marchi, M. (2022). β-Casein variants differently affect bulk milk mineral content, protein composition, and technological traits. International Dairy Journal, 124, 105221. doi: https://doi.org/10.1016/j.idairyj.2021.105221
  21. Niero, G., Visentin, G., Ton, S., De Marchi, M., Penasa, M., Cassandro, M. (2016). Phenotypic characterisation of milk technological traits, protein fractions, and major mineral and fatty acid composition of Burlina cattle breed*. Italian Journal of Animal Science, 15 (4), 576–583. doi: https://doi.org/10.1080/1828051x.2016.1250128
  22. Ladyka, V. I., Pavlenko, Y. M., Sklyarenko, Y. I., Ladyka, L. M., Levchenko, I. V. (2022). Influence of beta-casein genotype on milk quality indicators in brown cattle. Bulletin of Sumy National Agrarian University. The Series: Livestock, 4 (47), 7–12. doi: https://doi.org/10.32845/bsnau.lvst.2021.4.2
  23. Ladyka, V., Pavlenko, Y., Drevytska, T., Dosenko, V., Sklyarenko, Y. (2021). The Investigation of β-case in gene polymorphism and its relationship with milk composition in cows. Tehnologìâ Virobnictva ì Pererobki Produktìv Tvarinnictva, 2(166), 92–100. doi: https://doi.org/10.33245/2310-9289-2021-166-2-92-100
  24. Guinee, T. P., Mulholland, E. O., Kelly, J., Callaghan, D. J. O. (2007). Effect of Protein-to-Fat Ratio of Milk on the Composition, Manufacturing Efficiency, and Yield of Cheddar Cheese. Journal of Dairy Science, 90 (1), 110–123. doi: https://doi.org/10.3168/jds.s0022-0302(07)72613-9
  25. Gislon, G., Bava, L., Bisutti, V., Tamburini, A., Brasca, M. (2023). Bovine beta casein polymorphism and environmental sustainability of cheese production: The case of Grana Padano PDO and mozzarella cheese. Sustainable Production and Consumption, 35, 85–94. doi: doi: https://doi.org/10.1016/j.spc.2022.10.017
  26. Jensen, H. B., Holland, J. W., Poulsen, N. A., Larsen, L. B. (2012). Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties. Journal of Dairy Science, 95 (6), 2891–2903. doi: https://doi.org/10.3168/jds.2012-5346
  27. Hallén, E., Allmere, T., Näslund, J., Andrén, A., Lundén, A. (2007). Effect of genetic polymorphism of milk proteins on rheology of chymosin-induced milk gels. International Dairy Journal, 17 (7), 791–799. doi: https://doi.org/10.1016/j.idairyj.2006.09.011
  28. Sturaro, A., De Marchi, M., Zorzi, E., Cassandro, M. (2015). Effect of microparticulated whey protein concentration and protein-to-fat ratio on Caciotta cheese yield and composition. International Dairy Journal, 48, 46–52. doi: https://doi.org/10.1016/j.idairyj.2015.02.003
  29. Marko, R., Uros, G., Branislav, V., Milan, M., Danijela, K., Vlado, T., Zoran, S. (2020). Beta-Casein Gene Polymorphism in Serbian Holstein-Friesian Cows and Its Relationship with Milk Production Traits. Acta Veterinaria, 70 (4), 497–510. doi: https://doi.org/10.2478/acve-2020-0037
  30. Samilyk, M., Vechorka, V., Bolgova, N., Samokhina, Y., Kyselov, O. (2023). Analysis of cheeses made by waste-free technology. Food Science and Technology, 16 (4). doi: https://doi.org/10.15673/fst.v16i4.2539
  31. de Vitte, K., Kerziene, S., Klementavičiūtė, J., de Vitte, M., Mišeikienė, R., Kudlinskienė, I. et al. (2022). Relationship of β-casein genotypes (A1A1, A1A2 and A2A2) to the physicochemical composition and sensory characteristics of cows’ milk. Journal of Applied Animal Research, 50 (1), 161–166. doi: https://doi.org/10.1080/09712119.2022.2046005
Determining the influence of raw milk protein composition on the yield of cheese and its nutrient content

Downloads

Published

2023-12-28

How to Cite

Ladyka, V., Bolgova, N., Synenko, T., Skliarenko, Y., & Vechorka, V. (2023). Determining the influence of raw milk protein composition on the yield of cheese and its nutrient content. Eastern-European Journal of Enterprise Technologies, 6(11 (126), 33–41. https://doi.org/10.15587/1729-4061.2023.292063

Issue

Section

Technology and Equipment of Food Production