Development of granular composites based on laponite and Zr/Fe-alginate for effective removal of uranium (VI) from sulfate solutions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.292524

Keywords:

granular composites, zirconium-iron alginates, uranium (VI) removal, sulfate solutions, laponite

Abstract

The object of research is granular composites based on zirconium-iron alginates and laponite. The task of research is to determine the influence of the Zr:Fe ratio on the structure of granular composites and efficiency of uranium (VI) removal from aqueous solutions. The influence of the zirconium and iron ratio on the parameters of the material's pore structure has been established, particularly on the change in the content of micropores within the matrix. The specific surface area of the materials ranges from 86 to 112 m²/g. The sorption properties of the composites regarding uranium (VI) have been investigated. The impact of the charge of surface groups and the form of uranium (VI) presence in sulfate solutions on their sorption characteristics has been demonstrated. The maximum adsorption capacity reaches 265.1 µmol/g at pH 6. It is shown that an elevated electrolyte content positively affects the efficiency of uranium (VI) removal in neutral and alkaline medium. It has been established that structural changes in the materials occur due to the intensive interaction of iron ions and alginate molecules, resulting in the formation of a dense gel-like structure. The mechanism of uranium (VI) removal is associated with the formation of surface complexes in the presence of electrolytes. The synthesized granulated composites exhibit improved removal efficiency of uranium (VI) under conditions of high mineralization of solutions, making them attractive for potential use as sorbents. The obtained results can be utilized in the development of effective methods for purifying water environments from uranium (VI) in high mineralization conditions, which is a relevant issue in the field of nuclear energy and the removal of radioactive substances from water systems

Author Biographies

Ihor Pylypenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD

Department of Chemical Technology of Ceramics and Glass

Iryna Kovalchuk, Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine

Doctor of Chemical Sciences

Laboratory of Environmental Chemistry

Mykola Tsyba, Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine

Department of Nanoscale Carbon Materials for Energy Storage

References

  1. Deng, D., Zhang, L., Dong, M., Samuel, R. E., Ofori‐Boadu, A., Lamssali, M. (2020). Radioactive waste: A review. Water Environment Research, 92 (10), 1818–1825. doi: https://doi.org/10.1002/wer.1442
  2. Bachmaf, S., Planer-Friedrich, B., Merkel, B. J. (2008). Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite. Radiochimica Acta, 96 (6), 359–366. doi: https://doi.org/10.1524/ract.2008.1496
  3. Pylypenko, I., Spasоnova, L., Kovalchuk, I., Veremeienko, V. (2014). Sorption of cobalt, chromium and uranium ions on Fe/Ti-pillared montmorillonite. Eastern-European Journal of Enterprise Technologies, 4 (6 (70)), 57–61. doi: https://doi.org/10.15587/1729-4061.2014.26246
  4. Liu, W., Wang, Q., Wang, H., Xin, Q., Hou, W., Hu, E., Lei, Z. (2022). Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand. Chemosphere, 287, 132193. doi: https://doi.org/10.1016/j.chemosphere.2021.132193
  5. Algothmi, W. M., Bandaru, N. M., Yu, Y., Shapter, J. G., Ellis, A. V. (2013). Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science, 397, 32–38. doi: https://doi.org/10.1016/j.jcis.2013.01.051
  6. Gao, X., Li, M., Zhao, Y., Zhang, Y. (2019). Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chemical Engineering Journal, 378, 122096. doi: https://doi.org/10.1016/j.cej.2019.122096
  7. Shawky, H. A. (2010). Improvement of water quality using alginate/montmorillonite composite beads. Journal of Applied Polymer Science, 119 (4), 2371–2378. doi: https://doi.org/10.1002/app.32694
  8. da Silva Fernandes, R., de Moura, M. R., Glenn, G. M., Aouada, F. A. (2018). Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, 265, 327–336. doi: https://doi.org/10.1016/j.molliq.2018.06.005
  9. Kumar, S., Dumpala, R. M. R., Chandane, A., Bahadur, J. (2022). Elucidation of the sorbent role in sorption thermodynamics of uranium(VI) on goethite. Environmental Science: Processes & Impacts, 24 (4), 567–575. doi: https://doi.org/10.1039/d1em00380a
  10. Liu, H., Wang, R., Jiang, H., Gong, H., Wu, X. (2015). Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide. Journal of Radioanalytical and Nuclear Chemistry, 308 (1), 213–220. doi: https://doi.org/10.1007/s10967-015-4315-y
  11. Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. doi: https://doi.org/10.1016/j.ijbiomac.2020.09.046
  12. Wang, D., Zhang, J., Li, J. (2023). Phosphate-functionalized magnetic calcium alginate for the engineering remediation of uranium-contaminated water and soil. Chemical Engineering Journal, 475, 145910. doi: https://doi.org/10.1016/j.cej.2023.145910
  13. Xie, S. B., Luo, J., Liu, Q., Ling, H., Duan, Y., Wang, J. (2015). Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium (VI). Acta Materiae Compositae Sinica, 32 (1), 268–275. doi: https://doi.org/10.13801/j.cnki.fhclxb.20140519.002
  14. Yi, X., Sun, F., Han, Z., Han, F., He, J., Ou, M. et al. (2018). Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicology and Environmental Safety, 158, 309–318. doi: https://doi.org/10.1016/j.ecoenv.2018.04.039
  15. Wen, S., Wang, H., Xin, Q., Hu, E., Lei, Z., Hu, F., Wang, Q. (2023). Selective adsorption of uranium (VI) from wastewater using a UiO-66/calcium alginate/hydrothermal carbon composite material. Carbohydrate Polymers, 315, 120970. doi: https://doi.org/10.1016/j.carbpol.2023.120970
  16. Tripathi, A., Melo, J. S., D’Souza, S. F. (2013). Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads. Journal of Hazardous Materials, 246-247, 87–95. doi: https://doi.org/10.1016/j.jhazmat.2012.12.002
  17. Yu, J., Wang, J., Jiang, Y. (2017). Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engineering and Technology, 49 (3), 534–540. doi: https://doi.org/10.1016/j.net.2016.09.004
  18. Qing, Z., Wang, L., Liu, X., Song, Z., Qian, F., Song, Y. (2022). Simply synthesized sodium alginate/zirconium hydrogel as adsorbent for phosphate adsorption from aqueous solution: Performance and mechanisms. Chemosphere, 291, 133103. doi: https://doi.org/10.1016/j.chemosphere.2021.133103
  19. Yu, L., Ma, Y., Ong, C. N., Xie, J., Liu, Y. (2015). Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Advances, 5 (80), 64983–64990. doi: https://doi.org/10.1039/c5ra08922k
  20. Rouquerol, F., Rouquerol, J. et al. (2014). Adsorption by Powders and Porous Solids. Elsevier. doi: https://doi.org/10.1016/c2010-0-66232-8
  21. Doroshenko, D., Pylypenko, I., Kovalchuk, I., Kornilovych, B., Spasonova, L. (2018). Investigation of the structure and sorption peculiarities of cobalt and uranium ions by nanocomposites based on montmorillonite and tetraethoxysilane. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.144553
  22. Swain, S. K., Patnaik, T., Patnaik, P. C., Jha, U., Dey, R. K. (2013). Development of new alginate entrapped Fe(III)–Zr(IV) binary mixed oxide for removal of fluoride from water bodies. Chemical Engineering Journal, 215-216, 763–771. doi: https://doi.org/10.1016/j.cej.2012.10.098
  23. Yu, S., Ma, J., Shi, Y., Du, Z., Zhao, Y., Tuo, X., Leng, Y. (2020). Uranium(VI) adsorption on montmorillonite colloid. Journal of Radioanalytical and Nuclear Chemistry, 324 (2), 541–549. doi: https://doi.org/10.1007/s10967-020-07083-y
  24. Vanhorn, J., Huang, H. (2006). Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coordination Chemistry Reviews, 250 (7-8), 765–775. doi: https://doi.org/10.1016/j.ccr.2005.09.010
  25. Kornilovych, B. Yu., Sorokin, O. H., Pavlenko, V. M., Koshyk, Yu. Y. (2011). Pryrodookhoronni tekhnolohiyi v uranovydobuvniy ta pererobniy promyslovosti. Kyiv: Norma, 156.
  26. Li, S., Wang, X., Huang, Z., Du, L., Tan, Z., Fu, Y., Wang, X. (2015). Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. Journal of Radioanalytical and Nuclear Chemistry, 308 (3), 877–886. doi: https://doi.org/10.1007/s10967-015-4513-7
  27. Yu, T., Chen, Y., Zhang, Y., Tan, X., Xie, T., Shao, B., Huang, X. (2021). Novel reusable sulfate-type zirconium alginate ion-exchanger for fluoride removal. Chinese Chemical Letters, 32 (11), 3410–3415. doi: https://doi.org/10.1016/j.cclet.2021.04.057
  28. Yan, T., Luo, X., Zou, Z., Lin, X., He, Y. (2017). Adsorption of Uranium(VI) from a Simulated Saline Solution by Alkali-Activated Leather Waste. Industrial & Engineering Chemistry Research, 56 (12), 3251–3258. doi: https://doi.org/10.1021/acs.iecr.6b04425
  29. Fox, P. M., Davis, J. A., Zachara, J. M. (2006). The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta, 70 (6), 1379–1387. doi: https://doi.org/10.1016/j.gca.2005.11.027
Development of granular composites based on laponite and Zr/Fe-alginate for effective removal of uranium (VI) from sulfate solutions

Downloads

Published

2023-12-22

How to Cite

Pylypenko, I., Kovalchuk, I., & Tsyba, M. (2023). Development of granular composites based on laponite and Zr/Fe-alginate for effective removal of uranium (VI) from sulfate solutions. Eastern-European Journal of Enterprise Technologies, 6(10 (126), 27–34. https://doi.org/10.15587/1729-4061.2023.292524