Erosion resistance of coatings exposed to microimpacts

Authors

  • Виктор Николаевич Воеводин National Science of Centre «Kharkov institute of Physics and technology», Ukraine, Ukraine
  • Геннадий Николаевич Картмазов National Science of Centre «Kharkov institute of Physics and technology», Ukraine, Ukraine
  • Владимир Григорьевич Маринин National Science of Centre «Kharkov institute of Physics and technology», Ukraine, Ukraine https://orcid.org/0000-0001-5417-7029

DOI:

https://doi.org/10.15587/1729-4061.2014.29576

Keywords:

coatings, plasmatron sedimentation, electric spark, vacuum and arc, atomic and ionic, cavitation, resistance (to erosion) / durability, interdependence, microhardness

Abstract

We have studied erosion of nichrome, titanium, titanium nitride, chrome, and chrome carbide coatings impacted by cavitation. The coatings are obtained by applying plasmatron, detonation, vacuum and arc as well as atomic and ionic sedimentation methods. Ultra-sound cavitation was created in water; the fluctuation amplitude of the emitting vibrator surface was equal to 30±2 µm with the frequency of 20±2 kHz. The erosion was assessed by the gravimetric method with the precision of up to 0.015 mg. The kinetic curves on the dependence of the eroded mass quantity upon cavitation time have determined the velocity of coating deterioration as well as coating durability. The research has proved that coatings precipitated by plasmatron and detonation methods have low resistance to erosion and deteriorate 3-5 times quicker than steel of the 15H11MF variety because such coatings have a layered structure resulting from a discreet supply of material to the specimen and formation of intermediate brittle layers between the supplies. The result is low resistance of the interlayer boundaries and the coating as a whole. Vacuum and arc titanium, titanium nitride as well as atomic and ionic chrome, carbon-doped coatings have a certain mass loss resistance that exceeds steel durability up to 5-8 times. The research has proved that durability of atomic and ionic coatings depends on their microhardness, whereas coatings with microhardness of 8-10 GPa have an optimal resistance to erosion.

Author Biographies

Виктор Николаевич Воеводин, National Science of Centre «Kharkov institute of Physics and technology», Ukraine

Corresponding member АН ofUkraine, the professor, director

Institute of physics of a firm body, materials science and technologies

Геннадий Николаевич Картмазов, National Science of Centre «Kharkov institute of Physics and technology», Ukraine

The candidate technical sciences, the senior scientific employee, the head of a department

Institute of physics of a firm body, materials science and technologies

Владимир Григорьевич Маринин, National Science of Centre «Kharkov institute of Physics and technology», Ukraine

The candidate of physical and mathematical sciences, the senior lecturer, the senior scientific employee

Institute of physics of a firm body, materials science and technologies

References

  1. Zmij, V. I., Ruden'kij, S. G. (2010). Reakcionno-aktivirovannaja diffuzija i vakuumnye pokrytija. Kharkiv: NNC HFTI, 158.
  2. Kudinov, V. V. (1977). Plazmennye pokrytija. Moscow: «Nauka», 184.
  3. Aksenov, I. I., Andreev, A. A., Belous, V. A.; Aksenova I. I. (Ed.) (2012). Vakuumnaja duga: istochniki plazmy, osazhdenie pokrytij, poverhnostnoe modificirovanie. NPP «Izdatel'stvo “Naukova dumka” NAN Ukrainy», dizajn, 726.
  4. Andreev, A. A., Sablev, L. P., Grigor'ev, S. N. (2010). Vakuumno-dugovye pokrytija. Kharkiv: NNC HFTI, 317.
  5. Boxman, R. L., Zhitomirsky, V. N., Grinberg, I., Rapoport, L., Goldsmith, S., Weiss, B. Z. (2000). Structure and properties of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb. Surface and Coatings Technology, 125 (1-3), 257 – 262. doi: 10.1016/s0257-8972(99)00570-8
  6. Dobrzanski, L. A., Adamiak, M. (2003). Structure and properties of the TiN and Ti(CN) coatings deposited in the PVD process on the high-speed steels. Journal of Materials Processing Technology, 133 (1-2), 50–62. doi: 10.1016/s0924-0136(02)00244-3
  7. Kartmazov, G. N., Kovalenko, V. I., Kunchenko, V. V., Marinin, V. G. (1998). Issledovanie jerozii pokrytij iz nitrida titana pod vozdejstviem kavitacii i vozdushno-abrazivnogo potoka. Voprosy atomnoj nauki i tehniki. Serija FRP i RM, 5 (71), 71–74.
  8. Kovalenko, V. I., Marynin, V. G. (1998). Obladnannja dlja doslidzhennja erozii' pokryttiv pry mikro udarnomu dijanni. Voprosi atomnoj nauky y tehnyky. Seryja FRP y RM, 5 (71), 83–85.
  9. Marynin, V. G. (2011). Coverings for protection of elements the heat power equipment. Eastern-European Journal of Enterprise Technologies, 5/5(53), 32–37. Available at: http://journals.uran.ua/eejet/article/view/1220/1124
  10. Smyslov, A. M., Mingazhev, A. D., Smyslova, M. K. (2011). Nanoslojnoe pokrytie dlja lopatok turbomashin iz titanovyh splavov. Ufa: Vestnik UGATU. Mashinostroenie, 15/1 (41), 109–112.

Published

2014-12-15

How to Cite

Воеводин, В. Н., Картмазов, Г. Н., & Маринин, В. Г. (2014). Erosion resistance of coatings exposed to microimpacts. Eastern-European Journal of Enterprise Technologies, 6(11(72), 8–13. https://doi.org/10.15587/1729-4061.2014.29576

Issue

Section

Materials Science