Development of the sociocyberphysical systems` multi-contour security methodology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.298844

Keywords:

socio-cyberphysical system, cyber security, information security, security of information, critical infrastructure facilities

Abstract

The constant increase in the number of threats to the security of critical infrastructure objects, which include socio-cyberphysical systems, leads to a decrease in the quality of security services and the level of security of infrastructure elements. The object of research is the process of building a complex system of protection in socio-cyberphysical systems. The imperfection of the mechanisms for ensuring the security of critical infrastructure objects, which include socio-cyberphysical systems, the technological complexity of identifying new security threats necessitates an urgent need for a radical revision of the current approaches to its provision. So, it becomes clear that the development of a new approach to ensuring the security of information resources in socio-cyberphysical systems is needed. The article proposes a new approach to the methodological foundations of building multi-contour information protection systems with internal and external circuits on each of the platforms of socio-cyberphysical systems. This approach is based on a universal classifier of threats, which takes into account not the technical aspect of threats, but also their integration with social engineering methods, their synergy of hybridity. The sociopolitical influence on the realization of threats is taken into account, and practical mechanisms for providing basic security services based on post-quantum algorithms are also proposed. To provide basic security services in the proposed multi-contour protection system, it is proposed to use post-quantum algorithms – McEliece crypto-code constructions, which provide Perr=10-9–10-12, safe time Tsec=1025–1035 group operations. Within the framework of the proposed approach, the problem of increasing the level of information security has been formalized and further ways of solving it have been determined

Author Biographies

Stanislav Milevskyi, National Technical University "Kharkiv Polytechnic Institute"

PhD, Associate Professor

Department of Cybersecurity

Olha Korol, National Technical University "Kharkiv Polytechnic Institute"

PhD, Associate Professor

Department of Cybersecurity

Galyna Mykytyn, Lviv Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Information Security

Iryna Lozova, National Aviation University

Senior Lecturer

Department of Information Technology Security

Svetlana Solnyshkova, Ivan Kozhedub Kharkiv National Air Force University

PhD, Associate Professor

Department of Physics and Electronics

Iryna Husarova, Kharkiv National University of Radio Electronics

PhD, Associate Professor

Department of Applied Mathematics

Alla Hrebeniuk, National Academy of the Security Service of Ukraine

PhD, Senior Researcher

Scientific Laboratory

Andrii Vlasov, Kharkiv National University of Radio Electronics

PhD, Senior Researcher

Department of Information Technology Security

Vladyslav Sukhoteplyi, Ivan Kozhedub Kharkiv National Air Force University

Department of Radioelectronic Systems of Control Points of Air Forces

Dmytro Balagura, Kharkiv National University of Radio Electronics

PhD

Department of Information Technology Security

References

  1. Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) (2021). Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 188. https://doi.org/10.15587/978-617-7319-31-2
  2. Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M., Hrytsyk, V., Milov, O. et al.; Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M. (Eds.) (2022). Modeling of security systems for critical infrastructure facilities. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 196. https://doi.org/10.15587/978-617-7319-57-2
  3. Yevseiev, S., Khokhlachova, Yu., Ostapov, S., Laptiev, O., Korol, O., Milevskyi, S. et al.; Yevseiev, S., Khokhlachova, Yu., Ostapov, S., Laptiev, O. (Eds.) (2023). Models of socio-cyber-physical systems security. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 184. https://doi.org/10.15587/978-617-7319-72-5
  4. Yevseiev, S., Dzheniuk, N., Tolkachov, M., Milov, O., Voitko, T., Prygara, M. et al. (2023). Development of a multi-loop security system of information interactions in socio-cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (125)), 53–74. https://doi.org/10.15587/1729-4061.2023.289467
  5. Dzheniuk, N., Yevseiev, S., Lazurenko, B., Serkov, O., Kasilov, O. (2023). A method of protecting information in cyber-physical space. Advanced Information Systems, 7 (4), 80–85. https://doi.org/10.20998/2522-9052.2023.4.11
  6. Shmatko, O., Herasymov, S., Lysetskyi, Y., Yevseiev, S., Sievierinov, О., Voitko, T. et al. (2023). Development of the automated decision-making system synthesis method in the management of information security channels. Eastern-European Journal of Enterprise Technologies, 6 (9 (126)), 39–49. https://doi.org/10.15587/1729-4061.2023.293511
  7. Haag, S., Siponen, M., Liu, F. (2021). Protection Motivation Theory in Information Systems Security Research. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 52 (2), 25–67. https://doi.org/10.1145/3462766.3462770
  8. Li, Y., Xin, T., Siponen, M. (2022). Citizens’ Cybersecurity Behavior: Some Major Challenges. IEEE Security & Privacy, 20 (1), 54–61. https://doi.org/10.1109/msec.2021.3117371
  9. Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. https://doi.org/10.15587/1729-4061.2020.205702
  10. Khoroshko, V. O., Pavlov, I. M., Bobalo, Y. Ya., Dudykevich, V. B. et al. (2020). Design of complex information protection systems. Lviv: Ed. Lviv Polytechnic, 320.
  11. Brailovskyi, M. M., Zybin, S. V., Piskun, I. V., Khoroshko, V. O., Khokhlacheva, Yu. E. (2021). Information protection technologies. Kyiv: Central Committee "Comprint", 296.
  12. Dudykevich, V. B., Khoroshko, V. O., Yaremchuk, Yu. E. (2018). Basics of information security. Vinnytsia: Ed. He. national technical Univ, 315.
  13. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS PUB 202. https://doi.org/10.6028/NIST.FIPS.202
  14. Migration to Post-Quantum Cryptography. Available at: https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
  15. Clarridge, A., Salomaa, K. (2009). A Cryptosystem Based on the Composition of Reversible Cellular Automata. Lecture Notes in Computer Science, 314–325. https://doi.org/10.1007/978-3-642-00982-2_27
  16. Lightweight Cryptography. Available at: https://csrc.nist.gov/Projects/lightweight-cryptography
  17. Davydiuk, A. (2023). Implementation of new tools and methods for increasing the level of cyber security of critical infrastructure objects. Ukrainian Scientific Journal of Information Security, 25 (3). https://doi.org/10.18372/2410-7840.25.17937
  18. Khomik, M., Harasymchuk, O. (2023). Analysis of threats to generators of pseudo-random numbers and pseudo-random sequences and protection measures. Ukrainian Information Security Research Journal, 25 (4). https://doi.org/10.18372/2410-7840.25.18222
  19. Klimovych, S. (2023). Methodology of traffic masking in a specialized data transmission network. Ukrainian Scientific Journal of Information Security, 25 (3). https://doi.org/10.18372/2410-7840.25.17935
  20. Risk assessment methodologies. Available at: https://www.cisa.gov/sites/default/files/publications/Risk%2520Assessment%2520Methodologies.pdf
  21. UNOCT launches Update of the UN Compendium of Good Practices on the Protection of Critical Infrastructure against Terrorist Attacks. Available at: https://www.un.org/counterterrorism/events/unoct-launches-2022-update-un-compendium-good-practices-protection-critical-infrastructure
  22. Methodology for assessing regional infrastructure resilience (2021). Washington. Available at: https://www.cisa.gov/sites/default/files/publications/DIS_DHS_Methodology_Report_ISD%2520EAD%2520Signed_with%2520alt-text_0.pdf
  23. Theocharidou, M., Giannopoulos, G. (2015). Risk assessment methodologies for critical infrastructure protection. Part II, A new approach. Publications Office of the European Union. https://doi.org/10.2788/621843
  24. Giannopoulos, G., Dorneanu, B., Jonkeren, O. (2013). Risk Assessment Methodology for Critical Infrastructure Protection. EUR 25745 EN. Luxembourg (Luxembourg): Publications Office of the European Union. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC78292
  25. Threat and Hazard Identification and Risk Assessment (THIRA) and Stakeholder Preparedness Review (SPR) Guide (2018). Available at: https://www.fema.gov/sites/default/files/2020-07/threat-hazard-identification-risk-assessment-stakeholder-preparedness-review-guide.pdf
  26. National Protection Framework (2016). Available at: https://www.fema.gov/sites/default/files/2020-04/National_Protection_Framework2nd-june2016.pdf
  27. Yevseiev, S., Hryhorii, K., Liekariev, Y. (2016). Developing of multi-factor authentication method based on niederreiter-mceliece modified crypto-code system. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 11–23. https://doi.org/10.15587/1729-4061.2016.86175
  28. Yevseiev, S., Korol, O., Kots, H. (2017). Construction of hybrid security systems based on the crypto-code structures and flawed codes. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 4–21. https://doi.org/10.15587/1729-4061.2017.108461
  29. Yevseiev, S., Tsyhanenko, O., Ivanchenko, S., Aleksiyev, V., Verheles, D., Volkov, S. et al. (2018). Practical implementation of the Niederreiter modified crypto­code system on truncated elliptic codes. Eastern-European Journal of Enterprise Technologies, 6 (4 (96)), 24–31. https://doi.org/10.15587/1729-4061.2018.150903
  30. Yevseiev, S., Tsyhanenko, O., Gavrilova, A., Guzhva, V., Milov, O., Moskalenko, V. et al. (2019). Development of Niederreiter hybrid crypto-code structure on flawed codes. Eastern-European Journal of Enterprise Technologies, 1 (9 (97)), 27–38. https://doi.org/10.15587/1729-4061.2019.156620
  31. Yevseiev, S., Havrylova, A., Korol, O., Dmitriiev, O., Nesmiian, O., Yufa, Y., Hrebennikov, A. (2022). Research of collision properties of the modified UMAC algorithm on crypto-code constructions. EUREKA: Physics and Engineering, 1, 34–43. https://doi.org/10.21303/2461-4262.2022.002213
  32. Yevseiev, S., Havrylova, A., Milevskyi, S., Sinitsyn, I., Chalapko, V., Dukin, H. et al. (2023). Development of an improved SSL/TLS protocol using post-quantum algorithms. Eastern-European Journal of Enterprise Technologies, 3 (9 (123)), 33–48. https://doi.org/10.15587/1729-4061.2023.281795
  33. Pohasii, S., Yevseiev, S., Zhuchenko, O., Milov, O., Lysechko, V., Kovalenko, O. et al. (2022). Development of crypto-code constructs based on LDPC codes. Eastern-European Journal of Enterprise Technologies, 2 (9 (116)), 44–59. https://doi.org/10.15587/1729-4061.2022.254545
  34. Yevseiev, S., Abdalla, A., Osiievskyi, S., Larin, V., Lytvynenko, M. (2020). Development of an advanced method of video information resource compression in navigation and traffic control systems. EUREKA: Physics and Engineering, 5, 31–42. https://doi.org/10.21303/2461-4262.2020.001405
  35. Korchenko, A., Breslavskyi, V., Yevseiev, S., Zhumangalieva, N., Zvarych, A., Kazmirchuk, S. et al. (2021). Development of a method for constructing linguistic standards for multi-criteria assessment of honeypot efficiency. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 14–23. https://doi.org/10.15587/1729-4061.2021.225346
  36. Yevseiev, S., Kuznietsov, O., Herasimov, S., Horielyshev, S., Karlov, A., Kovalov, I. et al. (2021). Development of an optimization method for measuring the Doppler frequency of a packet taking into account the fluctuations of the initial phases of its radio pulses. Eastern-European Journal of Enterprise Technologies, 2 (9 (110)), 6–15. https://doi.org/10.15587/1729-4061.2021.229221
  37. Yevseiev, S., Melenti, Y., Voitko, O., Hrebeniuk, V., Korchenko, A., Mykus, S. et al. (2021). Development of a concept for building a critical infrastructure facilities security system. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 63–83. https://doi.org/10.15587/1729-4061.2021.233533
  38. Yevseiev, S., Laptiev, O., Lazarenko, S., Korchenko, A., Manzhul, I. (2021). Modeling the protection of personal data from trust and the amount of information on social networks. EUREKA: Physics and Engineering, 1, 24–31. https://doi.org/10.21303/2461-4262.2021.001615
  39. Cybersecurity classifier. Available at: https://skl.sspu.sumy.ua/
  40. Milevsky, S. (2023). Development of threat classifier in socio-cyber-physical systems. Ukrainian Scientific Journal of Information Security, 29 (3). https://doi.org/10.18372/2225-5036.29.18070
  41. Yevseiev, S., Milevskyi, S., Bortnik, L., Voropay, A., Bondarenko, K., Pohasii, S. (2022). Socio-Cyber-Physical Systems Security Concept. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). https://doi.org/10.1109/hora55278.2022.9799957
  42. Yevseiev, S., Ryabukha, Y., Milov, O., Milevskyi, S., Pohasii, S., Melenti, Y. et al. (2021). Development of a method for assessing forecast of social impact in regional communities. Eastern-European Journal of Enterprise Technologies, 6 (2 (114)), 30–43. https://doi.org/10.15587/1729-4061.2021.249313
  43. Yevseiev, S., Pohasii, S., Milevskyi, S., Milov, O., Melenti, Y., Grod, I. et al. (2021). Development of a method for assessing the security of cyber-physical systems based on the Lotka–Volterra model. Eastern-European Journal of Enterprise Technologies, 5 (9 (113)), 30–47. https://doi.org/10.15587/1729-4061.2021.241638
  44. Ranjitha, C. R., Thomas, J., Chithra, K. R. (2016). A brief study on LDPC codes. International Journal of Engineering Research and General Science, 4, (2), 612–618. Available at: http://pnrsolution.org/Datacenter/Vol4/Issue2/85.pdf
  45. Broul´ım, J. (2018). LDPC codes - new methodologies. University of West Bohemia, 127. Available at: https://cds.cern.ch/record/2730008/files/CERN-THESIS-2018-479.pdf
  46. Zhu, H., Pu, L., Xu, H., Zhang, B. (2018). Construction of Quasi-Cyclic LDPC Codes Based on Fundamental Theorem of Arithmetic. Wireless Communications and Mobile Computing, 2018, 1–9. https://doi.org/10.1155/2018/5264724
  47. Singh, H. (2020). Code based Cryptography: Classic McEliece. arXiv.org. https://doi.org/10.48550/arXiv.1907.12754
  48. Otmani, A., Tillich, J.-P., Dallot, L. (2010). Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes. Mathematics in Computer Science, 3 (2), 129–140. https://doi.org/10.1007/s11786-009-0015-8
  49. Liva, G., Song, S., Lan, L., Zhang, Y., Lin, S., Ryan, W. E. (2017). Design of LDPC Codes: A Survey and New Results. Journal of Communications Software and Systems, 2 (3), 191. https://doi.org/10.24138/jcomss.v2i3.283
  50. Richardson, T. J., Urbanke, R. L. (2001). Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory, 47 (2), 638–656. https://doi.org/10.1109/18.910579
  51. Chandrasetty, V. A., Aziz, S. M. (2011). FPGA Implementation of a LDPC Decoder using a Reduced Complexity Message Passing Algorithm. Journal of Networks, 6 (1). https://doi.org/10.4304/jnw.6.1.36-45
  52. Wang, Y. (2008). Generalized constructions, decoding and implementation of LDPC codes. University of Hawaii at Manoa.
  53. Rukhin, A., Sota, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S. et al. (2000). A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards and Technology. https://doi.org/10.6028/nist.sp.800-22
  54. Milevsky, S. (2023). Sociocyberphysical systems’ security models. Ukrainian Information Security Research Journal, 25 (4). https://doi.org/10.18372/2410-7840.25.18224
Development of the sociocyberphysical systems` multi-contour security methodology

Downloads

Published

2024-02-28

How to Cite

Milevskyi, S., Korol, O., Mykytyn, G., Lozova, I., Solnyshkova, S., Husarova, I., Hrebeniuk, A., Vlasov, A., Sukhoteplyi, V., & Balagura, D. (2024). Development of the sociocyberphysical systems` multi-contour security methodology. Eastern-European Journal of Enterprise Technologies, 1(9 (127), 34–51. https://doi.org/10.15587/1729-4061.2024.298844

Issue

Section

Information and controlling system