Method for early ignition detection based on the sampling dispersion of dangerous parameter

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.299001

Keywords:

early detection of fire, ignition materials, selective dispersion, hazardous parameters, gas environment

Abstract

The object of the study is the selective dispersion of dangerous parameters of the gas environment during material fires. The practical importance of research consists in using the difference of sample dispersions of dangerous parameters of the gas environment on the intervals of absence and presence of ignition of materials for detection of ignition. The theoretical substantiation of the method of detecting fires in premises based on sample dispersions of current measurements of an arbitrary dangerous parameter of the gas environment, corresponding to the general populations of reliable absence and presence of fire, has been carried out. The method, at a given level of significance, determines the unbiased uniformly most powerful fire detection rule. This makes it possible to determine how much differences in sample variances are significant with a given level of significance and are caused by ignition or are random factors. Laboratory experiments were conducted to verify the proposed method. It was established that the influence of ignition on the value of the difference in the sample dispersion at the corresponding intervals of monitoring the carbon monoxide concentration, smoke density, and temperature of the gaseous environment of the laboratory chamber is different and depends on the type of ignition material. At the same time, the minimum difference of the sample dispersions is characteristic for observing the smoke density for all the studied materials. However, early detection of ignition of alcohol, paper, wood, and textiles when observing the smoke density is carried out when the threshold is exceeded by 9.01, 5.31, 2.13 and 2.55 times, respectively. It is shown that the method of early detection of fires, which is based on the detection of significant differences in sample dispersions of data from the relevant general populations

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Research Center

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Environmental Safety and Environmental Education

Vasyl Fedyna, National Aviation University

PhD, Associate Professor

Department of Civil and Industrial Safety

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Andrii Melnychenko, National University of Civil Defence of Ukraine

PhD

Department of Logistics and Technical Support of Rescue Operations

Pavlo Borodych, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire and Rescue Training

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD, Associate Professor

Department of Geography and Tourism

Svyatoslav Manzhura, National Academy of the National Guard of Ukraine

PhD

Research Center

Olha Yesipova, National Academy of the National Guard of Ukraine

PhD

Scientific and Organizational Department

References

  1. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. https://doi.org/10.15587/978-617-7319-43-5
  2. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). https://doi.org/10.6001/energetika.v64i4.3893
  3. Popov, O., Ivaschenko, T., Markina, L., Yatsyshyn, T., Iatsyshyn, A., Lytvynenko, O. (2023). Peculiarities of Specialized Software Tools Used for Consequences Assessment of Accidents at Chemically Hazardous Facilities. Systems, Decision and Control in Energy V, 779–798. https://doi.org/10.1007/978-3-031-35088-7_45
  4. Popov, O., Iatsyshyn, A., Kovach, V., Iatsyshyn, A., Neklonskyi, I., Zakora, A. (2023). Is There a Future for Small Modular Reactors in Ukraine? Comparative Analysis with Large Capacity Reactors. Systems, Decision and Control in Energy V, 453–469. https://doi.org/10.1007/978-3-031-35088-7_24
  5. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. https://doi.org/10.1260/1750-9548.9.1.9
  6. Barannik, V., Babenko, Y., Kulitsa, O., Barannik, V., Khimenko, A., Matviichuk-Yudina, O. (2020). Significant Microsegment Transformants Encoding Method to Increase the Availability of Video Information Resource. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). https://doi.org/10.1109/atit50783.2020.9349256
  7. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high­temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. https://doi.org/10.5604/01.3001.0012.9654
  8. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. https://doi.org/10.4028/www.scientific.net/msf.1006.179
  9. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  10. Kondratenko, O., Vambol, S., Strokov, O., Avramenko, A. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 55–61.
  11. Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. https://doi.org/10.15587/1729-4061.2020.213892
  12. World Fire Statistics (2022). Center for Fire Statistics of CTIF, 27, 65. Available at: https://ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG.pdf
  13. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. https://doi.org/10.4028/www.scientific.net/msf.1006.70
  14. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. https://doi.org/10.15587/1729-4061.2021.233606
  15. Davie County, NC: Fire Marshal’s Office, revision date. Standard operating guidelines. 6/5/2018. Stages of fire growth. Available at: https://www.daviecountync.gov/DocumentCenter/View/5942/500-006-Stages-of-Fire-Growth-PDF
  16. Gaur, A., Singh, A., Kumar, A., Kulkarni, K. S., Lala, S., Kapoor, K. et al. (2019). Fire Sensing Technologies: A Review. IEEE Sensors Journal, 19 (9), 3191–3202. https://doi.org/10.1109/jsen.2019.2894665
  17. Zhang, G., Li, H., Zhu, G., Li, J. (2020). Temperature fields for fire resistance analysis of structures exposed to natural fires in large space buildings. The Structural Design of Tall and Special Buildings, 29 (4). https://doi.org/10.1002/tal.1708
  18. Oswald, D. (2021). Homeowner vulnerability in residential buildings with flammable cladding. Safety Science, 136, 105185. https://doi.org/10.1016/j.ssci.2021.105185
  19. Snoonian, D. (2003). Smart buildings. IEEE Spectrum, 40 (8), 18–23. https://doi.org/10.1109/mspec.2003.1222043
  20. Xu, Z., Guo, Y., Saleh, J. H. (2021). Advances Toward the Next Generation Fire Detection: Deep LSTM Variational Autoencoder for Improved Sensitivity and Reliability. IEEE Access, 9, 30636–30653. https://doi.org/10.1109/access.2021.3060338
  21. Liu, Z. (2003). Review of Recent Developments in Fire Detection Technologies. Journal of Fire Protection Engineering, 13 (2), 129–151. https://doi.org/10.1177/1042391503013002003
  22. Jadon, A., Omama, M., Varshney, A., Ansari, M. S., Sharma, R. (2019). FireNet: a specialized lightweight fire & smoke detection model for real-time IoT applications. arXiv. https://doi.org/10.48550/arXiv.1905.11922
  23. Fire and rescue incident statistics, England, year ending December 2020. Available at: https://assets.publishing.service.gov.uk/media/609a533fe90e07357a9e250c/fire-and-rescue-incident-dec20-hosb1021.pdf
  24. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. https://doi.org/10.15587/1729-4061.2022.265781
  25. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. https://doi.org/10.15587/1729-4061.2017.110092
  26. Çetin, A. E., Dimitropoulos, K., Gouverneur, B., Grammalidis, N., Günay, O., Habiboǧlu, Y. H. et al. (2013). Video fire detection – Review. Digital Signal Processing, 23 (6), 1827–1843. https://doi.org/10.1016/j.dsp.2013.07.003
  27. Li, P., Zhao, W. (2020). Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering, 19, 100625. https://doi.org/10.1016/j.csite.2020.100625
  28. Ayyubi, S., Miao, Y., Shi, H. (2014). Automating standalone smoke alarms for early remote notifications. 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). https://doi.org/10.1109/icarcv.2014.7064385
  29. Mao, W., Wang, W., Dou, Z., Li, Y. (2018). Fire Recognition Based On Multi-Channel Convolutional Neural Network. Fire Technology, 54 (2), 531–554. https://doi.org/10.1007/s10694-017-0695-6
  30. Wen, Z., Xie, L., Feng, H., Tan, Y. (2019). Robust fusion algorithm based on RBF neural network with TS fuzzy model and its application to infrared flame detection problem. Applied Soft Computing, 76, 251–264. https://doi.org/10.1016/j.asoc.2018.12.019
  31. Geetha, S., Abhishek, C. S., Akshayanat, C. S. (2020). Machine Vision Based Fire Detection Techniques: A Survey. Fire Technology, 57 (2), 591–623. https://doi.org/10.1007/s10694-020-01064-z
  32. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131.
  33. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
  34. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  35. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. https://doi.org/10.1016/s1007-0214(11)70005-0
  36. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. https://doi.org/10.3390/a7040523
  37. Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y. et al. (2022). Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)), 56–62. https://doi.org/10.15587/1729-4061.2022.259493
  38. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. https://doi.org/10.15587/1729-4061.2019.176579
  39. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. https://doi.org/10.15587/1729-4061.2018.125926
  40. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. https://doi.org/10.15587/1729-4061.2019.187252
  41. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. https://doi.org/10.15587/1729-4061.2020.200140
  42. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. https://doi.org/10.15587/1729-4061.2020.218714
  43. Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (121)), 46–54. https://doi.org/10.15587/1729-4061.2023.272949
  44. Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevska, O., Butenko, T. et al. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 4 (10 (118)), 60–66. https://doi.org/10.15587/1729-4061.2022.263194
  45. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. https://doi.org/10.15587/1729-4061.2021.226692
  46. Dubinin, D., Cherkashyn, O., Maksymov, A., Beliuchenko, D., Hovalenkov, S., Shevchenko, S., Avetisyan, V. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building. Sigurnost, 62 (4), 347–357. https://doi.org/10.31306/s.62.4.2
  47. Pasport. Spovishchuvach pozhezhnyi teplovyi tochkovyi. Arton. Available at: https://ua.arton.com.ua/files/passports/%D0%A2%D0%9F%D0%A2-4_UA.pdf
  48. Pasport. Spovishchuvach pozhezhnyi dymovyi tochkovyi optychnyi. Arton. Available at: https://ua.arton.com.ua/files/passports/spd-32_new_pas_ua.pdf
  49. Optical/Heat Multisensor Detector (2019). Discovery. Available at: https://www.nsc-hellas.gr/pdf/APOLLO/discovery/B02704-00%20Discovery%20Multisensor%20Heat-%20Optical.pdf
  50. Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T. et al. (2022). Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. Eastern-European Journal of Enterprise Technologies, 2 (10 (116)), 57–65. https://doi.org/10.15587/1729-4061.2022.254500
  51. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology.
  52. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Vol. 1. National Institute of Standard and Technology.
  53. Hogg, R. V., McKean, J. W., Craig, A. T. (2019). Introduction to mathematical statistics. Pearson, 746. Available at: https://minerva.it.manchester.ac.uk/~saralees/statbook2.pdf
  54. Van de Geer, S. (2010). Mathematical Statistics. Available at: https://people.math.ethz.ch/~geer/mathstat.pdf
  55. Ling, S. (2020). Lecture Notes on Mathematical Statistics. Available at: https://cims.nyu.edu/~sling/Math_Stats_Lecture_2020F.pdf
  56. Lehmann, E. L. (Ed.) (1999). Elements of Large-Sample Theory. Springer, 632. https://doi.org/10.1007/b98855
  57. Levin, B. R. (1966). Teoreticheskie osnovy statisticheskoy radiotehniki. Moscow: Sovetskoe radio.
  58. Cramér, H. (1999). Mathematical methods of statistics. Vol. 26. Princeton University Press.
  59. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. https://doi.org/10.1088/1757-899x/708/1/012065
  60. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. https://doi.org/10.1051/e3sconf/201912301012
  61. Loboichenko, V. M., Vasyukov, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. https://doi.org/10.3233/ajw-170035
  62. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. https://doi.org/10.5604/01.3001.0012.2830
  63. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. https://doi.org/10.15587/1729-4061.2021.238555
Method for early ignition detection based on the sampling dispersion of dangerous parameter

Downloads

Published

2024-02-28

How to Cite

Pospelov, B., Rybka, E., Krainiukov, O., Fedyna, V., Bezuhla, Y., Melnychenko, A., Borodych, P., Hryshko, S., Manzhura, S., & Yesipova, O. (2024). Method for early ignition detection based on the sampling dispersion of dangerous parameter. Eastern-European Journal of Enterprise Technologies, 1(10 (127), 55–63. https://doi.org/10.15587/1729-4061.2024.299001