Development of method for frequency regulation of output current in high-voltage transformerless resonant chargers of capacitive energy storage devices

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.299031

Keywords:

frequency regulation, high-voltage transformerless chargers, capacitive storage devices, resonant inverters

Abstract

The object of research is high-voltage systems of electric discharge installations for various technological purposes. The work reports solving the problem of enabling the rate of charging of a capacitive energy storage, set by the requirements of a certain high-voltage technology.

The quantitative characteristics of the deviation of the output current of the resonant inverter from the set stabilized value when changing the switching frequency of inverter switches in the range of output voltage change from 0 to 20 kV were determined. Using the Fourier transform of the rectangular input voltage, the frequency regulation possibility of the output current of the charger for capacitive energy storage devices was analyzed. Estimation dependences of the output current of resonant inverter on the load resistance and frequency deviation from resonant frequency were derived. These dependences could be used to implement frequency control over the switching inverter transistors, with the help of which the given effective value of the output current of the resonant inverter is obtained.

A method of frequency regulation of the output current in high-voltage transformerless resonant charging devices of capacitive energy storage devices has been developed. Special feature of this method is that it is based on the frequency dependence of reactive resistances of the inductance and capacitance of the resonant circuit connected in series. Owing to that, it makes it possible to adjust the switching frequency of the inverter’s power switches depending on the relative resistance of the load and the specified growth rate of the capacitive energy storage voltage.

The results reported here could be used in the design of benches for testing the electrical strength of high-voltage cables, as well as for the construction of high-voltage transformerless chargers in systems of electric discharge impulse processing of materials

Author Biographies

Dmytro Vinnychenko, Institute of Electrodynamics of the National Academy of Sciences of Ukraine

PhD, Associate Professor

Department of Power Supply of Technological Systems

Natalia Nazarova, Institute of Pulse Processes and Technologies of the National Academy of Sciences of Ukraine

PhD, Associate Professor

Department of Impulse Electrical Engineering Systems

Iryna Vinnychenko, Admiral Makarov National University of Shipbuilding

PhD, Associate Professor

Department of Computerized Control Systems

References

  1. Pravyla tekhnichnoi ekspluatatsiyi elektroustanovok spozhyvachiv (2018). Kharkiv: Industriya, 320.
  2. Vinnychenko, D., Nazarova, N., Vinnychenko, I. (2022). Transformerless High-Voltage Resonant Charging Systems for Capacitive Energy Storage Devices for Electro-Discharge Technologies. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). https://doi.org/10.1109/elnano54667.2022.9927052
  3. Malyushevskaya, A., Koszelnik, P., Yushchishina, A., Mitryasova, O., Mats, A., Gruca-Rokosz, R. (2023). Eco-Friendly Principles on the Extraction of Humic Acids Intensification from Biosubstrates. Journal of Ecological Engineering, 24 (2), 317–327. https://doi.org/10.12911/22998993/156867
  4. Zhekul, V. G., Litvinov, V. V., Mel'her, Yu. I., Smirnov, A. P., Taftay, E. I., Hvoshchan, O. V., Shvets, I. S. (2017). Pogruzhnye elektrorazryadnye ustanovki dlya intensifikatsii dobychi poleznyh iskopaemyh. Naftohazova enerhetyka, 1 (27), 23–31. Available at: http://elar.nung.edu.ua/handle/123456789/5249
  5. Mativenga, P. T., Shuaib, N. A., Howarth, J., Pestalozzi, F., Woidasky, J. (2016). High voltage fragmentation and mechanical recycling of glass fibre thermoset composite. CIRP Annals, 65 (1), 45–48. https://doi.org/10.1016/j.cirp.2016.04.107
  6. Malyushevskaya, A. P., Malyushevskii, P. P., Yushchishina, A. N. (2021). Extraction of Cellulose from Flax Fiber by Electric Discharge Cavitation. Surface Engineering and Applied Electrochemistry, 57 (2), 228–232. https://doi.org/10.3103/s1068375521020058
  7. Nazarova, N., Vinnychenko, D., Bohuslavskii, L. (2021). Search for the Ways of Implementation of the Hybrid Method for Obtaining Hardening Composite Coating with Onion-like Carbon and Metal Carbides during Electrical Conductors Explosion. 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON). https://doi.org/10.1109/ukrcon53503.2021.9575266
  8. Vovchenko, A. I., Boguslavskiy, L. Z., Miroshnichenko, L. N. (2010). Tendentsii razvitiya moshchnyh vysokovol'tnyh generatorov impul'snyh tokov v IIPT NAN Ukrainy. Tekhnichna elektrodynamika, 5, 69–74. Available at: http://dspace.nbuv.gov.ua/handle/123456789/61909
  9. Suprunovska, N. I., Shcherba, A. A. (2017). Parametric synthesis of reservoir capacitor circuits in the thyristor generator of discharge pulses with the controllable voltage feedback. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). https://doi.org/10.1109/ukrcon.2017.8100507
  10. Shcherba, A. A., Suprunovska, N. I., Shcherba, M. A., Roziskulov, S. S. (2021). Regulation of output dynamic characteristics of electric discharge installations with reservoir capacitors. Tekhnichna Elektrodynamika, 2021 (3), 3–9. https://doi.org/10.15407/techned2021.03.003
  11. Kozyrev, S. (2022). Control System for High-voltage Electrochemical Explosion. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). https://doi.org/10.1109/khpiweek57572.2022.9916460
  12. Shcherba, А. А., Ivashchenko, D. S., Suprunovska, N. I. (2013). Development of difference equations method for analysis of transient processes in the circuits of electro-discharge systems at stochastic changing of load resistance. Tekhnichna elektrodynamika, 3, 3–11. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/62302/01-Scherba.pdf?sequence=1
  13. Ivashchenko, D. S., Shcherba, A. A., Suprunovska, N. I. (2016). Analyzing probabilistic properties of electrical characteristics in the circuits containing stochastic load. 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS). https://doi.org/10.1109/ieps.2016.7521887
  14. Milyah, A. N., Volkov, I. V. (1974). Sistemy neizmennogo toka na osnove induktivno-emkostnyh preobrazovateley. Kyiv: Naukova Dumka, 216.
  15. Pentegov, I. V. (1982). Osnovy teorii zaryadnyh tsepey emkostnyh nakopiteley energii. Kyiv: Naukova dumka, 422.
  16. Tang, J. L., Shao, S. Q., Sun, T. T. (2017). NON-Microcomputer Ultra Capacitor Charging System. Proceedings of the 2017 2nd International Conference on Civil, Transportation and Environmental Engineering (ICCTE 2017). https://doi.org/10.2991/iccte-17.2017.106
  17. Volkov, I. V., Podolnyi, S. V. (2017). Controllable resonant type converter development for capacitor charging loads. Tekhnichna Elektrodynamika, 2017 (6), 11–17. https://doi.org/10.15407/techned2017.06.011
  18. Anh, P. T., Chen, M.-H. (2016). Design and optimization of high-efficiency resonant wireless power transfer system. 2016 International Conference on System Science and Engineering (ICSSE). https://doi.org/10.1109/icsse.2016.7551636
  19. Zhu, Q., Wang, L., Liao, C. (2014). Compensate Capacitor Optimization for Kilowatt-Level Magnetically Resonant Wireless Charging System. IEEE Transactions on Industrial Electronics, 61 (12), 6758–6768. https://doi.org/10.1109/tie.2014.2321349
  20. Pavlov, G. V., Vinnychenko, I. L., Pokrovskiy, M. V. (2018). Adaptive control system of the frequency converter on the basis of resonant inverter with nonlinear control. Tekhnichna Elektrodynamika, 2018 (5), 39–43. https://doi.org/10.15407/techned2018.05.039
  21. Pavlov, G., Vinnichenko, I., Pokrovskiy, M. (2018). Estimation of Energy Efficiency of the Frequency Converter Based on the Resonant Inverter with Pulse-Density Control. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). https://doi.org/10.1109/ieps.2018.8559499
  22. Vinnychenko, D. V., Nazarova, N. S. (2019). Source of the stabilized discharge current in carbon-containing gases with frequency-parametric regulation. Tekhnichna Elektrodynamika, 2019 (1), 25–28. https://doi.org/10.15407/techned2019.01.025
  23. Shcherba, А. A., Suprunovska, N. I. (2016). Electric energy loss at energy exchange between capacitors as function of their initial voltages and capacitances ratio. Tekhnichna Elektrodynamika, 2016 (3), 9–11. https://doi.org/10.15407/techned2016.03.009
  24. Volkov, I. V., Zozulev, V. I., Khrysto, O. I. (2019). Increasing of the efficiency of power electronics devices by the control of charging time of the capacitors in their circuits. Tekhnichna Elektrodynamika, 2019 (2), 15–18. https://doi.org/10.15407/techned2019.02.015
  25. Suprunovska, N. I., Shcherba, A. A. (2015). Processes of energy redistribution between parallel connected capacitors. Tekhnichna elektrodynamika, 4, 3–11. Available at: http://dspace.nbuv.gov.ua/xmlui/handle/123456789/134067
  26. Vinnychnko, D. V., Nazarova, N. S., Vinnychenko, I. L. (2023). Research of characteristics of high voltage transformerless resonant charger of capacitary storage device. Tekhnichna Elektrodynamika, 2023 (2), 21–27. https://doi.org/10.15407/techned2023.02.021
  27. Boguslavskii, L. Z., Rud’, A. D., Kir’yan, I. M., Nazarova, N. S., Vinnichenko, D. V. (2015). Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surface Engineering and Applied Electrochemistry, 51 (2), 105–110. https://doi.org/10.3103/s1068375515020027
  28. Rud, A. D., Kornienko, N. E., Polunkin, I. V., Boguslavskii, L. Z., Vinnichenko, D. V., Kirian, I. M. et al. (2023). Structure of carbon nanospheres modified with oxygen-containing groups and halogens. Applied Nanoscience, 13 (10), 6929–6937. https://doi.org/10.1007/s13204-023-02817-2
  29. Ochin, P., Gilchuk, A. V., Monastyrsky, G. E., Koval, Y., Shcherba, A. A., Zaharchenko, S. N. (2013). Martensitic Transformation in Spark Plasma Sintered Compacts of Ni-Mn-Ga Powders Prepared by Spark Erosion Method in Cryogenic Liquids. Materials Science Forum, 738-739, 451–455. https://doi.org/10.4028/www.scientific.net/msf.738-739.451
  30. Vinnychenko, D., Nazarova, N. (2019). The High-Voltage Electrical Engineering Systems of Gaseous Hydrocarbons Electro-Discharge Processing Design Principles. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). https://doi.org/10.1109/elnano.2019.8783220
Development of method for frequency regulation of output current in high-voltage transformerless resonant chargers of capacitive energy storage devices

Downloads

Published

2024-02-28

How to Cite

Vinnychenko, D., Nazarova, N., & Vinnychenko, I. (2024). Development of method for frequency regulation of output current in high-voltage transformerless resonant chargers of capacitive energy storage devices. Eastern-European Journal of Enterprise Technologies, 1(5 (127), 6–15. https://doi.org/10.15587/1729-4061.2024.299031

Issue

Section

Applied physics