Reducing the volume of computations when building analogs of neural networks for the first stage of an ensemble classifier with stacking

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.299734

Keywords:

multilayer perceptron, neural network, ensemble classifier, weighting coefficients, classification of objects in images

Abstract

The object of research in this work is ensemble classifiers with stacking, intended for the classification of objects in images with the presence of small sets of labeled data for training. To improve the quality of classification at the first stage of such a classifier, it is necessary to place more primary classifiers that differ in heterogeneous structured processing. However, the number of known neural networks with appropriate characteristics is limited. One approach to solving this problem is to build analogs of known neural networks that make classification errors on other images compared to the base network. The disadvantage of the known methods for constructing such analogs is the need to perform additional floating-point operations. The current paper proposes and investigates a new method to form analogs through random cyclic shifts of rows or columns of input images. This has made it possible to completely eliminate additional floating-point operations. The effectiveness of using this method is explained by the structured processing of input images in basic neural networks. The use of analogs obtained by the proposed method does not impose additional restrictions in practice. This is because the heterogeneity of structured processing in basic neural networks is a typical requirement for them in an ensemble classifier with stacking.

The simulation for the CIFAR-10 data set demonstrated that the proposed technique for constructing analogs allows for a comparative quality of classification by the ensemble classifier. Using MLP-Mixer analogs provided an improvement of 4.6 %, and CCT analogs – 5.9 %

Author Biographies

Oleg Galchonkov, Odesa Polytechnic National University

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

Oleksii Baranov, Oracle World Headquarters

Software Engineer

Oracle Corporation

Petr Chervonenko, Odesa Polytechnic National University

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

Oksana Babilunga, Odesa Polytechnic National University

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

References

  1. Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B. et al. (2023). MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data, 10 (1). https://doi.org/10.1038/s41597-022-01721-8
  2. Islam, Md. R., Nahiduzzaman, Md., Goni, Md. O. F., Sayeed, A., Anower, Md. S., Ahsan, M., Haider, J. (2022). Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images. Sensors, 22 (12), 4358. https://doi.org/10.3390/s22124358
  3. Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., Xie, P. (2020). COVID-CT-dataset: A CT scan dataset about COVID-19. arXiv. https://doi.org/10.48550/arXiv.2003.13865
  4. Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X. et al. (2020). Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell, 182 (5), 1360. h https://doi.org/10.1016/j.cell.2020.08.029
  5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. et al. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv. https://doi.org/10.48550/arXiv.2010.11929
  6. Sun, C., Shrivastava, A., Singh, S., Gupta, A. (2017). Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. 2017 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2017.97
  7. Aggarwal, C. C., Sathe, S. (2017). Outlier Ensembles. An Introduction. Springer International Publishing AG 2017, 276. https://doi.org/10.1007/978-3-319-54765-7
  8. Galchonkov, O., Babych, M., Zasidko, A., Poberezhnyi, S. (2022). Using a neural network in the second stage of the ensemble classifier to improve the quality of classification of objects in images. Eastern-European Journal of Enterprise Technologies, 3 (9 (117)), 15–21. https://doi.org/10.15587/1729-4061.2022.258187
  9. Galchonkov, O., Baranov, O., Babych, M., Kuvaieva, V., Babych, Y. (2023). Improving the quality of object classification in images by ensemble classifiers with stacking. Eastern-European Journal of Enterprise Technologies, 3 (9 (123)), 70–77. https://doi.org/10.15587/1729-4061.2023.279372
  10. Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60 (6), 84–90. https://doi.org/10.1145/3065386
  11. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.90
  12. Li, K., Wang, Y., Zhang, J., Gao, P., Song, G., Liu, Y. et al. (2023). UniFormer: Unifying Convolution and Self-Attention for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (10), 1–18. https://doi.org/10.1109/tpami.2023.3282631
  13. Hassani, A., Walton, S., Shah, N.,Abuduweili, A., Li, J., Shi, H. (2021). Escaping the Big Data Paradigm with Compact Transformers. arXiv. https://doi.org/10.48550/arXiv.2104.05704
  14. Gao, A. K. (2023). More for Less: Compact Convolutional Transformers Enable Robust Medical Image Classification with Limited Data. arXiv. https://doi.org/10.48550/arXiv.2307.00213
  15. Guo, M.-H., Liu, Z.-N., Mu, T.-J., Hu, S.-M. (2022). Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (5), 1–13. https://doi.org/10.1109/tpami.2022.3211006
  16. Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S. (2022). FNet: Mixing Tokens with Fourier Transforms. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. https://doi.org/10.18653/v1/2022.naacl-main.319
  17. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. et al. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv48922.2021.00986
  18. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T. (2021). MLP-Mixer: An all-MLP Architecture for Vision. arXiv. https://doi.org/10.48550/arXiv.2105.01601
  19. Liu, H., Dai, Z., So, D. R., Le, Q. V. (2021). Pay Attention to MLPs. arXiv. https://doi.org/10.48550/arXiv.2105.08050
  20. Lian, D., Yu, Z., Sun, X., Gao, S. (2021). AS-MLP: An Axial Shifted MLP Architecture for Vision. arXiv. https://doi.org/10.48550/arXiv.2107.08391
  21. Wang, Z., Jiang, W., Zhu, Y., Yuan, L., Song, Y., Liu, W. (2022). DynaMixer: A Vision MLP Architecture with Dynamic Mixing. arXiv. https://doi.org/10.48550/arXiv.2201.12083
  22. Hu, Z., Yu, T. (2023). Dynamic Spectrum Mixer for Visual Recognition. arXiv. https://doi.org/10.48550/arXiv.2309.06721
  23. Lv, T., Bai, C., Wang, C. (2022). MDMLP: Image Classification from Scratch on Small Datasets with MLP. arXiv. https://doi.org/10.48550/arXiv.2205.14477
  24. Chen, S., Xie, E., Ge, C., Chen, R., Liang, D., Luo, P. (2023). CycleMLP: A MLP-Like Architecture for Dense Visual Predictions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (12), 14284–14300. https://doi.org/10.1109/tpami.2023.3303397
  25. Borji, A., Lin, S. (2022). SplitMixer: Fat Trimmed From MLP-like Models. arXiv. https://doi.org/10.48550/arXiv.2207.10255
  26. Yu, T., Li, X., Cai, Y., Sun, M., Li, P. (2022). S2-MLP: Spatial-Shift MLP Architecture for Vision. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). https://doi.org/10.1109/wacv51458.2022.00367
  27. The CIFAR-10 dataset. Available at: https://www.cs.toronto.edu/~kriz/cifar.html
  28. Primery izobrazheniy i annotatsiy. Available at: https://docs.ultralytics.com/ru/datasets/classify/cifar10/#sample-images-and-annotations
  29. Brownlee, J. (2019). Better Deep Learning. Available at: https://machinelearningmastery.com/better-deep-learning/
  30. Code examples. Computer vision. Keras. Available at: https://keras.io/examples/vision/
  31. Brownlee, J. (2021). Weight Initialization for Deep Learning Neural Networks. Available at: https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
  32. Colab. Available at: https://colab.research.google.com/notebooks/welcome.ipynb
Reducing the volume of computations when building analogs of neural networks for the first stage of an ensemble classifier with stacking

Downloads

Published

2024-04-30

How to Cite

Galchonkov, O., Baranov, O., Chervonenko, P., & Babilunga, O. (2024). Reducing the volume of computations when building analogs of neural networks for the first stage of an ensemble classifier with stacking. Eastern-European Journal of Enterprise Technologies, 2(9 (128), 27–35. https://doi.org/10.15587/1729-4061.2024.299734

Issue

Section

Information and controlling system