Devising a technique for descending the illumination elements of aerial vehicles

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.303639

Keywords:

drag force, dual-rotor impeller, descent speed, illumination time, light intensity, illumination radius

Abstract

The object of this study is the process of descending illumination elements equipped with a braking device in the form of two-bladed grills rotating in different directions. The classic parachute method does not provide the necessary speed of descent, it has low illumination parameters and significant drift of illumination elements by side wind.

To solve the tasks set, mathematical dependences were obtained for calculating the aerodynamic characteristics of the descent device with the illumination element and its delivery to the ejection point. The drag and lift force coefficients during the flow around the blades of a dual-rotor impeller with different Reynolds numbers were determined by the method of numerical modeling based on the ANSYS CFX software package. The optimal geometric characteristics of the profile satisfying the condition for the necessary speed of descent of the illumination element at the given weight of the descent apparatus were determined.

Reasonable requirements for illumination parameters and an improved composition of the flare have been proposed.

A mathematical model of the movement of a body of variable mass to the point of ejection of the illumination element was built.

The new design of the descent device makes it possible to reduce the speed of descent by 10–15 % and increase the weight of the payload by 20–30 %. The proposed illumination composition provides sufficient illumination of the object for 5 minutes with a light intensity of 2–2,5 million candelas and an average diameter of the illuminated area of 2000–2500 m. The mathematical model of the movement of a variable mass body to the point of the illumination element ejection makes it possible to determine with high accuracy the gun firing settings with illumination ammunition (30–40 % more accurate) and the time of ejection of illumination elements.

Results of the current research make it possible to solve the scientific problem of ensuring the maximum efficiency of illuminating the terrain at night

Author Biographies

Vasyl Makeev, Sumy State University

PhD, Associate Professor

Department of Military Training

Anatoliy Derevjanchuk, Sumy State University

PhD, Professor

Department of Military Training

Andrii Vakal, Sumy State University

PhD, Senior Researcher

Department of Military Training

Mykola Liapa, Sumy State University

PhD, Associate Professor

Department of Military Training

References

  1. Tkachuk, P. P., Chumakevych, V. O., Droban, O. M., Fedor, B. S., Yevdokimov, P. M. (2023). Boieprypasy. Kyiv: Vyd. dim «SKIF», 266. Available at: https://jurkniga.ua/contents/boiepripasi-pidruchnik.pdf
  2. Buhaieva, L. M., Boiko, T. V., Beznosyk, Yu. O. (2017). Systemnyi analiz khimiko-tekhnolohichnykh kompleksiv. Kyiv: Interservis, 254. Available at: https://www.sworld.com.ua/doi/sahtk.pdf
  3. Dmitrievskiy, A. A. (2005). Vneshnyaya ballistika. Moscow: Mashinostroenie, 607.
  4. Homylev, S. A., Reznik, S. B., Ershov, S. V. (2008). Chislennoe issledovanie obtekaniya turbinnyh reshetok profiley: chast' 2 – issledovanie harakteristik vysokonagruzhennyh reshetok. Aviatsionno-kosmicheskaya tehnika i tehnologiya, 8 (55), 46–50. Available at: http://nbuv.gov.ua/UJRN/aktit_2008_8_12
  5. Makeiev, V. I., Raskoshnyi, A. F. (2023). Optymizatsiya konstruktyvnykh parametriv osvitliuvalnykh litalnykh aparativ dlia zmenshennia yikh rozsiiuvannia. Zbirnyk naukovykh prats TsNDI OVT ZSU, 1 (88), 83–92.
  6. Tiahniy, V. H., Yemets, V. V. (2023). Osnovy aerodynamiky ta dynamiky polotu: ch. I: Aerohidrohazodynamika. Kharkiv: KhNUVS, 280. Available at: https://dspace.univd.edu.ua/items/c3726f93-7e24-4fb0-8c62-e93f90aace8b
  7. Makeiev, V. I., Kolobylin, S. M., Zhytnyk, V. Ye., Liapa, M. M. (2023). Pat. No. 153331 UA. Artyleriiskyi snariad. No. u202201954; declareted: 09.06.2022; published: 21.06.2023, Bul. No. 25/2023. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=285443
  8. Rusanov, A. V., Kos'yanova, A. I., Suhorebryy, P. N., Horev, O. N. (2013). Gazodinamicheskoe sovershenstvovanie protochnoy chasti tsilindra vysokogo davleniya parovoy turbiny K-325-23,5. Nauka ta innovatsiyi, 9 (1), 33–40.
  9. Navin Kumar, B., Parammasivam, K. M., Selvaraju, P. N., Anbalagan, R. (2022). Feasibility analysis of novel aerodynamic braking system for horizontal axis wind turbines. Materials Today: Proceedings, 68, 1396–1402. https://doi.org/10.1016/j.matpr.2022.06.444
  10. Lebid, V. H., Myrhorod, Yu. I. (2006). Aerohidrohazodynamika. Kharkiv: KhUPS, 350.
  11. Boyko, A. V., Usatiy, A. P., Rudenko, A. S. (2014). Mnogokriterial'naya mnogoparametricheskaya optimizatsiya protochnoy chasti osevyh turbin s uchetom rezhimov ekspluatatsii. Kharkiv: NTU «KhPI», 220. Available at: https://repository.kpi.kharkov.ua/server/api/core/bitstreams/0a708b9b-d194-40b9-9a83-1f92901459fa/content
  12. Veisi, A. A., Shafiei Mayam, M. H. (2017). Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation. Applied Energy, 197, 375–392. https://doi.org/10.1016/j.apenergy.2017.04.013
  13. Boiko, A., Govorushchenko, Y., Usaty, A. (2016). Optimization of the Axial Turbines Flow Paths. New York: Science Publishing Group, 272.
  14. Barbely, N. L., Komerath, N. M., Novak, L. A. (2016). A Study of Coaxial Rotor Performance and Flow Field Characteristics. AHS Technical Meeting on Aeromechanics Design for Vertical Lift. Report ARC-E-DAA-TN28910, 15. Available at: https://rotorcraft.arc.nasa.gov/Publications/files/CFD_Design_Framework_Barbely.pdf
  15. Ahmadi-Baloutaki, M., Carriveau, R., Ting, D. S.-K. (2016). A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations. Renewable Energy, 96, 904–913. https://doi.org/10.1016/j.renene.2016.05.060
  16. Simakov, N. N. (2013). Raschet obtekaniya i soprotivleniya shara v laminarnom i sil'no turbulentnom potoke. Zhurnal tehnicheskoy fiziki, 83 (4), 16–20.
  17. Papchenko, A., Lipovy, V., Barikin, O. (2013). Analysis of the airflow about sphere as a first approximation to determine the aerodynamic characteristics of airfoil profiles of orthogonal wind turbines. Visnyk Sumskoho derzhavnoho universytetu. Seriya Tekhnichni nauky, 1, 19–24. Available at: http://essuir.sumdu.edu.ua/handle/123456789/31937
  18. Rusanov, A. V., Ershov, S. V. (2008). Matematicheskoe modelirovanie nestatsionarnyh gazodinamicheskih protsessov v protochnyh chastyah turbomashin. Kharkiv: IPMash NAN Ukrainy, 275.
  19. Yershov, S. V., Rusanov, A. V., Yakovlev, V. A. (2006). Aerodynamic improvement of flowpath of the Hp turbine basing on computations of 3D viscous flow. Nauka ta innovatsiyi, 2 (6), 39–48. Available at: https://scinn.org.ua/sites/default/files/pdf/2006/N6/6_06_39.pdf
  20. Boiko, A., Usaty, A. P. (2017). Use BIarc-Curves for Contour Description of the Turbine Profiles. NTU “KhPI” Bulletin: Power and Heat Engineering Processes and Equipment, 8 (1230), 20–27. https://doi.org/10.20998/2078-774x.2017.08.03
  21. Lupoviy, V., Papchenko, A. (2014). Methods Development for Determining the Aerodynamic Characteristics of Vertical Exist of Wind Turbine. Applied Mechanics and Materials, 630, 79–84. https://doi.org/10.4028/www.scientific.net/amm.630.79
  22. Lipoviy, V., Papchenko, A. (2013). Research of workflow of vertical wind turbines by numerical simulation. Eastern-European Journal of Enterprise Technologies, 3 (8 (63), 39–44. Available at: https://journals.uran.ua/eejet/article/view/14834/
  23. Vion, L., Delattre, G., Falissard, F., Jacquin, L. (2011). Counter-Rotating Open Rotor (CROR): flow physics and simulation. CFM 2011 – 20th French Congress of Mechanics. Besancon, hal-03421272. Available at: https://hal.science/hal-03421272/document
  24. Tarasov, A. I. (2012). Izbrannye lektsii po kursu «Komp'yuternye tehnologi proektirovaniya baz dannyh» na temu «Postroenie reshetki turbinnyh profiley polinomami Bez'e-Bernshteyna». Kharkiv: NTU «KhPI», 27. Available at: https://www.kpi.kharkov.ua/archive/Articles/turbine/Построение%20решетки%20турбинных%20профилей%20.pdf
  25. Boiko, A., Usaty, A. P. (2016). Integrated Mathematical Model of the Processes in the Turbine with Adjustable Steam Extraction. NTU “KhPI” Bulletin: Power and Heat Engineering Processes and Equipment, 8 (1180), 28–36. https://doi.org/10.20998/2078-774x.2016.08.04
  26. Hmel'nik, S. I. (2010). Uravneniya Nav'e-Stoksa. Sushchestvovanie i metod poiska global'nogo resheniya. Published by Mathematics in Computer Corp., 106.
  27. Majstrenko, O. V., Prokopenko, V. V., Makeev, V. I., Ivanyk, E. G. (2020). Analytical methods of calculation of powered and passive trajectory of reactive and rocket-assisted projectiles. Radio Electronics, Computer Science, Control, 2, 173–182. https://doi.org/10.15588/1607-3274-2020-2-18
  28. Makeiev, V., Pushkariov, Y., Raskoshnyi, A., Voronko, I., Myronova, S. (2022). Considering the Meteorological Elements for the Aerial Vehicles Flight by Using “Weight” Functions. Lecture Notes in Networks and Systems, 133–144. https://doi.org/10.1007/978-3-030-94259-5_13
  29. Makeev, V. I., Pushkarev, Yu. I. (2013). Choice of working parameters of a solid-fuel jet engine of unguided aircraft. Russian Aeronautics (Iz VUZ), 56 (4), 344–353. https://doi.org/10.3103/s1068799813040041
  30. Nakaz komandyra v/ch A1723 vid 15.07.2021 roku No. 173/21.
Devising a technique for descending the illumination elements of aerial vehicles

Downloads

Published

2024-06-28

How to Cite

Makeev, V., Derevjanchuk, A., Vakal, A., & Liapa, M. (2024). Devising a technique for descending the illumination elements of aerial vehicles. Eastern-European Journal of Enterprise Technologies, 3(1 (129), 14–24. https://doi.org/10.15587/1729-4061.2024.303639

Issue

Section

Engineering technological systems