Justification of parameters of impact-spreading finger shaft for grinder-mixer-dryer using the example of eggshells

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.304127

Keywords:

grinder-mixer-dryer, impact-spreading finger shaft, cracks, destructive speed, eggshell

Abstract

The object of the study is to determine the critical impact speed during shell destruction, study crack formation in the shell, and grind the shell. When operating a grinder-mixer-dryer, problems arise such as determining the speed of impact on the shell depending on the height of its fall, the lack of ability to determine the speed of shell fall from certain heights, which complicates planning the operation of the finger shaft. As a result of research, it was found that an auger with knives crushes and moves feed raw materials, and the impact-spreading shaft ensures partial grinding of fragile raw materials and intensive processes of mixing and drying wet feed with uniform filling of the installation hopper. The appearance of cracks on the shell when it falls from a height of 0.15 m has been experimentally recorded. Therefore, this speed of impact of the shell on a metal surface is the critical peripheral speed of the impact-spreading shaft, which ensures partial crushing of the shell. As a result of theoretical studies, an analytical expression was obtained that provides the determination of the shell impact speed depending on the height of its fall. The value of the critical peripheral speed of the fingers of the impact-spreading shaft is determined to be 1.66 m/s. The experimental results showed the effective occurrence of grinding, mixing and drying processes. Moreover, within 15 minutes of operation of the installation, the wet shell was crushed in accordance with the requirements. The uniformity reached up to 90 % within 4 to 6 minutes of its operation, and drying proceeded at a rate of 26.54 % per hour. All this proves the effectiveness of the processes of grinding, mixing and drying wet food, and also confirms the reliability of theoretical research

Supporting Agency

  • This research has been/was/is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19679802).

Author Biographies

Tokhtar Abilzhanuly, Scientific Production Center of Agricultural Engineering, LLP

Doctor of Technical Sciences, Professor

Laboratory of Innovative Equipment for Animal Husbandry

Ruslan Iskakov, S. Seifullin Kazakh Agrotechnical University

PhD, Assosiate Professor

Department of Technological Machines and Equipment

Daniyar Abilzhanov, Scientific Production Center of Agricultural Engineering, LLP

PhD, Leading Researcher

Alexandr Gulyarenko, S. Seifullin Kazakh Agrotechnical University

PhD, Assosiate Professor

Department of Standardization, Metrology and Certification

Valery Khan, S. Seifullin Kazakh Agrotechnical University

PhD in Engineering Science, Senior Lecturer

Department of Technological Machines and Equipment

References

  1. Laohavisuti, N., Boonchom, B., Boonmee, W., Chaiseeda, K., Seesanong, S. (2021). Simple recycling of biowaste eggshells to various calcium phosphates for specific industries. Scientific Reports, 11 (1). https://doi.org/10.1038/s41598-021-94643-1
  2. Qiu, Y., Hou, Y., Zhang, S., Jin, L., Zhou, J., Chen, J. (2022). Study on the preparation and properties of CaCO3 ultrafine powder derived from waste eggshell. Environmental Technology, 1–10. https://doi.org/10.1080/09593330.2022.2141664
  3. Liu, H., Guo, X., Yin, Y., Song, Sh., Liu, M., He, H. (2023). Optimization of Separation Process of Eggshell and Shell Membrane. Science and Technology of Food Industry, 44 (12), 193–200. https://doi.org/10.13386/j.issn1002-0306.2020090076
  4. Ahmed, T. A. E., Younes, M., Wu, L., Hincke, M. T. (2021). A Survey of Recent Patents in Engineering Technology for the Screening, Separation and Processing of Eggshell. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.677559
  5. Markochev, V. M. (2011). Reologicheskaya model' razrushayushchegosya tverdogo tela. Zavodskaya laboratoriya. Diagnostika materialov, 6, 44–47.
  6. Markochev, V. M., Alymov, M. I. (2017). On The Brittle Fracture Theory By Ya. Frenkel And A. Griffith. Chebyshevskii Sbornik, 18 (3), 381–393. https://doi.org/10.22405/2226-8383-2017-18-3-381-393
  7. Kochetkov, A. V., Fedotov, P. V. (2013). Nekotorye voprosy teorii udara. Naukovedeniye, 5, 1–15.
  8. Wang, D. K., Sun, L. T., Wei, J. P. (2019). Microstructure Evolution and Fracturing Mechanism of Coal Under Thermal Shock. Rock and Soil Mechanics, 40 (2), 529.
  9. Kachayev, A. Ye. (2011). K opredeleniyu vremeni udara i moshchnosti dezintegratora, raskhoduyemoy na izmel'cheniye pri udarnom vozdeystvii. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta imeni Shukhova, 3, 1–5.
  10. Glebov, L. A., Demskiy, A. B., Veden'yev, V. F., Yablokov, A. Ye. (2010). Tekhnologicheskoye oborudovaniye i potochnye linii predpriyatiy po pererabotke zerna. Moscow: DeLi print, 696.
  11. Maudlin, T. (2011). How bell reasoned: A reply to Griffiths. American Journal of Physics, 79 (9), 966–970. https://doi.org/10.1119/1.3606476
  12. Iskakov, R. M., Mamirbaeva, I. K., Gulyarenko, A. A., Silaev, M. Yu., Gusev, A. S. (2022). Improved Hammers for Crushers in Feed Production. Russian Engineering Research, 42 (10), 987–992. https://doi.org/10.3103/s1068798x22100124
  13. Smits, M., Kronbergs, E. (2017). Determination center of percussion for hammer mill hammers. Engineering for Rural Development. https://doi.org/10.22616/erdev2017.16.n072
  14. Kupchuk, I. M., Solona, O. V., Derevenko, I. A., Tverdokhlib, I. V. (2018). Verification of the Mathematical Model of the Energy Consumption Drive for Vibrating Disc Crusher. Inmateh-Agricultural Engineering, 55 (2), 113–120. Available at: https://www.researchgate.net/publication/328293822_Verification_of_the_mathematical_model_of_the_energy_consumption_drive_for_vibrating_disc_crusher
  15. Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Darkhan, O. (2023). Determination of the average size of preliminary grinded wet feed particles in hammer grinders. Eastern-European Journal of Enterprise Technologies, 1 (1 (121)), 34–43. https://doi.org/10.15587/1729-4061.2023.268519
  16. Tian, H., Wang, H., Huang, T., Wang, D., Liu, F., Han, B. (2018). Design of Combination Sieve for Hammer Feed Mill to Improve Crushing Performance. Transactions of the Chinese Society of Agricultural Engineering, 34 (22), 45–2. https://doi.org/10.11975/j.issn.1002-6819.2018.22.006
  17. Verma, H. R., Singh, K. K., Basha, S. M. (2018). Effect of Milling Parameters on the Concentration of Copper Content of Hammer-Milled Waste PCBs: A Case Study. Journal of Sustainable Metallurgy, 4 (2), 187–193. https://doi.org/10.1007/s40831-018-0179-z
  18. Feng, F., Shi, J., Yang, J., Ma, J. (2022). Correlation between the Angle of the Guide Plate and Crushing Performance in Vertical Shaft Crushers. Shock and Vibration, 2022, 1–8. https://doi.org/10.1155/2022/9991855
  19. Munkhbayar, B., Bayaraa, N., Rehman, H., Kim, J., Chung, H., Jeong, H. (2012). Grinding characteristic of multi-walled carbon nanotubes-alumina composite particle. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (6), 1009–1013. https://doi.org/10.1007/s11595-012-0590-4
  20. Hong, S., Kim, S. (2017). Analysis of simulation result by digital filtering technique and improvement of hammer crusher. International Journal of Mineral Processing, 169, 168–175. https://doi.org/10.1016/j.minpro.2017.11.004
  21. Iskakov, R. M., Iskakova, A. M., Nurushev, M. Z., Khaimuldinova, A. K., Karbayev, N. K. (2021). Method for the Production of Fat from Raw Materials and Animal Waste. Journal of Pure and Applied Microbiology, 15 (2), 716–724. https://doi.org/10.22207/jpam.15.2.23
  22. Iskakov, R., Sugirbay, A. (2023). Technologies for the Rational Use of Animal Waste: A Review. Sustainability, 15 (3), 2278. https://doi.org/10.3390/su15032278
  23. Al-Khasawneh, Y. (2021). Development and testing of a novel mathematical-physical model for the design of ring armor for the vertical shaft impact crushers. Minerals Engineering, 170, 106994. https://doi.org/10.1016/j.mineng.2021.106994
  24. Tumanov, A. M., Tumanova, M. I., Brusentsov, A. S. (2018). Obzor tekhniki, primenyayemoy dlya prigotovleniya kormov pri otkarmlivanii bychkov v malykh formakh khozyaystvovaniya. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 6, 117–121. Available at: https://e.lanbook.ru/journal/issue/309771
  25. Kormotsekhi na kolesakh KIS-8, KIS-9, KIS-10. Prospekt. Novosibirskiy opytno-eksperimental'niy zavod nestandartnogo oborudovaniya.
  26. Gishchenko, M. A., Braginets, S. V., Klimenko, V. I. (2010). Kombinirovannaya mashina dlya prigotovleniya i razdachi kormov. Sel'skiy mekhanizator, 11, 22–23.
  27. Madyshev, I. Sh., Faizrahmanov, R. N., Kamaldinov, I. N. (2017). Efficiency of feed additives in animals. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.E. Baumana, 232 (4), 105–108. Available at: https://sciup.org/jeffektivnost-kormovyh-dobavok-v-zhivotnovodstve-142212948
  28. Nikiforov, V. Ye., Uglin, V. K., Nikitin, L. A. (2018). Tekhnologicheskaya liniya sushki semyan kormovykh trav dlya usloviy Severo-Zapada Rossii. Agrozootekhnika, 2 (1), 1–9.
  29. Zykov, A. V., Zakharov, A. M., Yunin, V. A. (2019). Infrared Method for Drying Vegetable Raw Materials. Journal of Advanced Research in Technical Science, 16, 107–110. https://doi.org/10.26160/2474-5901-2019-16-107-110
  30. Yunin, V. A., Zykov, A. V., Zakharov, A. M., Perekopsky, A. N. (2020). Research of drum installation of drum type with infrared heat source. International Research Journal, 6 (96), 64–68. Available at: https://research-journal.org/wp-content/uploads/2020/06/6-1-96.pdf#page=64
  31. Targ, S. M. (2010). Kratkiy kurs teoreticheskoy mekhaniki. Moscow: Vysshaya shkola, 416.
  32. Strelkov, S. P. (1975). Mekhanika. Moscow: Nauka, 560.
  33. Abilzhanov, D. T., Adil'sheyev, A. S., Shabikova, G. A. (2019). Obosnovaniye parametrov podbrasyvayushchego barabana separatora listovoy chasti trav. Vestnik Kyrgyzsko-Rossiyskogo Slavyanskogo universiteta, 19 (12), 65–71.
  34. Abilzhanuly, T., Iskakov, R., Issenov, S., Kubentaeva, G., Mamyrbayeva, I., Abilzhanov, D. et al. (2023). Development of a layer leveling technology that reduces the energy intensity of the processes of mixing and drying the fodder mass. Eastern-European Journal of Enterprise Technologies, 4 (7 (124)), 106–115. https://doi.org/10.15587/1729-4061.2023.286325
  35. Abilzhanuly, T. (2007) Kormoprigotovitel'niye mashiny dlya krest'yanskikh khozyaystv i drugikh agroformirovaniy. Astana: Kazakhskiy agrotekhnicheskiy universitet imeni Seyfullina, 200.
Justification of parameters of impact-spreading finger shaft for grinder-mixer-dryer using the example of eggshells

Downloads

Published

2024-06-28

How to Cite

Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Gulyarenko, A., & Khan, V. (2024). Justification of parameters of impact-spreading finger shaft for grinder-mixer-dryer using the example of eggshells. Eastern-European Journal of Enterprise Technologies, 3(1 (129), 33–44. https://doi.org/10.15587/1729-4061.2024.304127

Issue

Section

Engineering technological systems