Development of a method for assessing the state of dynamic objects using a combined swarm algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.304131

Keywords:

efficiency of decision-making, hierarchical structures, complex and dynamic objects, optimization

Abstract

The object of the study is complex dynamic objects. The subject of the study is the decision-making process in the problems of managing complex dynamic objects. A method of assessing the state of dynamic objects using a combined swarm algorithm is proposed. The research is based on a combined swarm algorithm - for finding a solution to the state of dynamic objects with a hierarchical structure. To train the individuals of the combined swarm algorithm (CSA), evolving artificial neural networks are used, and to select the best in the combined swarm algorithm, an improved genetic algorithm is used. The originality of the method is:

– in taking into account the type of uncertainty and noise of data during the operation of the combined swarm algorithm due to the use of appropriate correction factors;

– in the implementation of adaptive strategies for the search for food sources due to setting appropriate search priorities;

– in taking into account the presence of a predator while choosing food sources by the flock agents of the combined swarm algorithm, which allows excluding unwanted search areas;

– in the additional consideration of the available computing resources of the state analysis system of complex dynamic objects while determining the maximum permissible parameters of the combined swarm algorithm;

– in the possibility of changing the search area and speed of movement by separate individuals of the flock of the combined swarm algorithm;

– in determining the best individuals of the flock of the combined swarm algorithm using an improved genetic algorithm;

– in training knowledge bases, carried out by training the synaptic weights of the artificial neural network, the type and parameters of the membership function, the architecture of individual elements and the architecture of the artificial neural network as a whole.

The method makes it possible to increase the efficiency of data processing at the level of 14–20 % by using additional improved procedures. The proposed method should be used to solve problems of evaluating complex dynamic objects

Author Biographies

Andrii Shyshatskyi, National Aviation University

PhD, Senior Researcher, Associate Professor

Department of Computerized Management Systems

Oksana Dmytriieva, Kharkiv National Automobile and Highway University

Doctor of Economic Sciences, Professor, Head of Department

Department of Economics and Entrepreneurship

Oleksandr Lytvynenko, Military Institute of Taras Shevchenko National University of Kyiv

PhD, Senior Researcher

Research Center

Ihor Borysov, Scientific-Research Institute of Military Intelligence

PhD, Associate Professor

Deputy Head of the Institute for Scientific Work

Yuliia Vakulenko, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Temerbay Mukashev, Karaganda Buketov University

PhD, Professor

Department of Economics and International Business

Oleksandr Mordovtsev, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Economics and Entrepreneurship

Svitlana Kashkevich, National Aviation University

Senior Lecturer

Department of Computerized Management Systems

Anna Lyashenko, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Senior Researcher

Scientific Center

Vira Velychko, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Lecturer

Department of Automated Control Systems

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
  19. Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
  20. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
  21. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
  22. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01
  23. Braik, M., Ryalat, M. H., Al-Zoubi, H. (2021). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34 (1), 409–455. https://doi.org/10.1007/s00521-021-06392-x
  24. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
  25. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
  26. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16
  27. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
  28. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
  29. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
  30. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. https://doi.org/10.15587/1729-4061.2017.96321
  31. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
Development of a method for assessing the state of dynamic objects using a combined swarm algorithm

Downloads

Published

2024-06-28

How to Cite

Shyshatskyi, A., Dmytriieva, O., Lytvynenko, O., Borysov, I., Vakulenko, Y., Mukashev, T., Mordovtsev, O., Kashkevich, S., Lyashenko, A., & Velychko, V. (2024). Development of a method for assessing the state of dynamic objects using a combined swarm algorithm. Eastern-European Journal of Enterprise Technologies, 3(4 (129), 44–54. https://doi.org/10.15587/1729-4061.2024.304131

Issue

Section

Mathematics and Cybernetics - applied aspects