Optimization of parameters of autobalancers for dynamic balancing of impeller of axial fans by 3D modeling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.30498

Keywords:

axial fan, auto-balancing, optimization of parameters, dynamic balancing, 3D-simulation, multifactorial experiment

Abstract

Optimize the parameters of ball-type auto-balancers for balancing of dynamic unbalance of the impeller axial fan by minimizing the time of occurrence of auto-balancing. Apply the theory of multifactor experiments. The experiment was conducted virtually. 3D-model of the fan and AB were created in computer CAD SolidWorks. The model corresponds to the full-scale axial fan № 4 Series FA 06-300. The dynamics were simulating with using of the module Cosmos Motion. The experimental results were processed by software package for statistical analysis STATISTICA.

We find the domains of parameters inside of which time of onset of auto-balancing does not exceed the specified time. It is established that in a selected range of variation of optimized parameters, auto-balancing fastest occurs at the lowest stiffness and the greatest viscosity of the supports of the fan. Just found that the decrease of the mass of the ball, in general, increases the time of occurrence of auto-balancing. It is shown that the proper choice of the parameters of AB and supports of fan can provide offensive of auto-balancing for 6–7 sec onds and without optimization of parameters this time may exceed 75 seconds.

Author Biographies

Любов Сергіївна Олійніченко, Kirovograd National Technical University pr. University, 8, Kirovograd, Ukraine, 25006

Aspirant

Department of Mathematics

Геннадій Борисович Філімоніхін, Kirovograd National Technical University University Ave 8, Kirovograd, Ukraine, 25006

Professor

Department of Machine Parts and Applied Mechanics

References

  1. Ziborov, K. A., Vanga, G. K., Marenko, V. N. (2013). Imbalance As A Major Factor Influencing The Work Rotors Mine Main Fan. Modern engineering. Science and education. – SPb.: Polytechnic University Press, 3, 734–740. Available at: http://www.mmf.spbstu.ru/mese/2013/734_740.pdf
  2. Gusarov, A. (2002). Avtomatic balancing devices direct-action. Moscow: Nauka, 119.
  3. Yatsun, V. (2010). The efficiency of passive autobalancer for balancing axial fan impellers. National university „Lvivska polytechnika". Lviv, 20.
  4. Filimonikhin, G. B., Goncharov, V. V., Olijnichenko, L. S. (2006). Patent 74641 UA : МПК G01M 1/32 (2006.01), F04D 29/66. Method for dynamic balancing a rigid rotor with passive balancers. Applicant and proprietor KNTU. № u201203307; presentation 20.03.2012; publication 12.11.2012, Bul. № 21, 5.
  5. Filimonikhin, G., Olijnichenko, L. (2011). Experimental determination of the efficiency of dynamic balancing by ball-type auto-balancers of the impeller of axial fan. http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=REF&P21DBN=REF&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=TJ=&S21COLORTERMS=1&S21STR=%D0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D0%B7%D0%B0%D1%86%D1%96%D1%8F%20%D0%B2%D0%B8%D1%80%D0%BE%D0%B1%D0%BD%D0%B8%D1%87%D0%B8%D1%85%20%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%96%D0%B2%20%D1%83%20%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D0%B1%D1%83%D0%B4%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%96%20%D1%82%D0%B0%20%D0%BF%D1%80%D0%B8%D0%BB%D0%B0%D0%B4%D0%BE%D0%B1%D1%83%D0%B4%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%96">Automation products. Machine build processes and instrument, 45, 496–503.
  6. Filimonikhin, G., Olijnichenko, L. (2013). Computer model of process of an automatic dynamic balancing by two auto-balancer of impeller of axial. A national multisectoral n.-t. collection of "Design, manufacture and operation of agricultural machines", 43 (I), 103–108.
  7. Sung, C. K., Chan, T. C., Chao, C. P., Lu, C. H. (2013). Influence of external excitations on ball positioning of an automatic balancer. Mechanism and Machine Theory, 69, 115–126. doi: 10.1016/j.mechmachtheory.2013.05.009
  8. Yoshida, S., Naka, T. (2014). Reduction Method of Residual Balancing Error on Auto-Balancer Mechanism. SICE Journal of Control, Measurement, and System Integration, 7 (3), 141–146. doi: 10.9746/jcmsi.7.141
  9. Rodrigues, D. J., Champneys, A. R., Friswell, M. I., Wilson, R. E. (2011). Experimental investigation of a single-plane automatic balancing mechanism for a rigid rotor. Journal of Sound and Vibration, 330 (3), 385–403. doi: 10.1016/j.jsv.2010.08.020
  10. Filimonikhin, G., Goncharov, V. (2014). Parameters optimization of centrifugal juicer with auto-balancer by minimization of time of autobalancing occurred. Eastern-European Journal of Enterprise Technologies, 2/7(68), 28–32. Available at: http://journals.uran.ua/eejet/article/view/23317/20930
  11. Chang, K.-H. (2008). Motion Simulation and Mechanism Design with COSMOSMotion 2007. Schroff Development Corporation, 142.
  12. Khalafyan, A. (2007). Statistica 6. Statistical analysis of the data. Moscow: OOO "Bean-Press", 512.
  13. Ermakov, S., Brodsky, V., Zhiglyavskii, A. (1983). The mathematical theory of experiment planning. Moscow: Nauka. Chap. Ed. Sci. lit., 392.
  14. Radchenko, S. (2011). Methodology of regression analysis. Kiev: “Korniichuk”, 376.

Published

2014-12-18

How to Cite

Олійніченко, Л. С., & Філімоніхін, Г. Б. (2014). Optimization of parameters of autobalancers for dynamic balancing of impeller of axial fans by 3D modeling. Eastern-European Journal of Enterprise Technologies, 6(7(72), 12–17. https://doi.org/10.15587/1729-4061.2014.30498

Issue

Section

Applied mechanics