Using relational learning in exploring the effectiveness of using hashtags in future topics and user relations in X

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.306726

Keywords:

user relationships, future topics, mathematical models, graph queries, relational learning

Abstract

This research has a research object, namely relational learning with a mathematical modeling approach from graph queries for exploring future topics and user relationships. The problem in this research is the large and varied number of tweets that are produced every day, where each use of hashtags always increases, which has an impact on the accumulation of data that needs to be processed to obtain information because users on social media X can interact to influence trends so as to solve the problem. This requires the application of relational learning by utilizing graph query mathematical models. The results obtained from this research are in the form of a model that can produce predictions of future topics and see user relationships based on interactions on social media with relationships between entities at interconnected nodes. In applying relational learning with mathematical models utilizing graph queries there will be a process of examining the relationships between entities, content and communication interactions in accordance with the definitions and theorems that have been described to observe each node. In relational learning, there will be each node according to the entity used, then the mathematical model with graph queries will connect all the entities to form a graph that can be used as a model for predicting future topics and relationships between users. This research is research with a level of novelty in applying graphical queries to mathematical models to predict future topics and applying relational learning to user relationships so that it can add information related to future communication. Graph queries aim to model a node between relations in the data so that it can represent a relationship between variables

Author Biographies

Ahmad Rahmatika, Universitas Muhammadiyah Sumatera Utara

Master of Mathematics Education

Department of Information Technology

Al-khowarizmi Al-khowarizmi, Universitas Muhammadiyah Sumatera Utara

Doctor of Computer Science

Department of Information Technology

Akrim Akrim, Universitas Muhammadiyah Sumatera Utara

Professor of Education

Department of Islamic Education

Okvi Nugroho, Universitas Muhammadiyah Sumatera Utara

Master of Computer

Department of Information Technology

Tri Andre Anu, Universitas Muhammadiyah Sumatera Utara

Master of Computer

Department of Information Technology

References

  1. Wu, F., Wu, T., Yuce, M. R. (2019). Design and Implementation of a Wearable Sensor Network System for IoT-Connected Safety and Health Applications. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot.2019.8767280
  2. Liu, J., Zhao, Z., Ji, J., Hu, M. (2020). Research and application of wireless sensor network technology in power transmission and distribution system. Intelligent and Converged Networks, 1 (2), 199–220. https://doi.org/10.23919/icn.2020.0016
  3. Swamy, S. N., Jadhav, D., Kulkarni, N. (2017). Security threats in the application layer in IOT applications. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). https://doi.org/10.1109/i-smac.2017.8058395
  4. Shivalingagowda, C., Ahmad, H., Jayasree, P. V. Y., Sah, D. K. (2021). Wireless Sensor Network Routing Protocols Using Machine Learning. Lecture Notes in Networks and Systems, 99–120. https://doi.org/10.1007/978-981-16-0386-0_7
  5. Khutsoane, O., Isong, B., Gasela, N., Abu-Mahfouz, A. M. (2020). WaterGrid-Sense: A LoRa-Based Sensor Node for Industrial IoT Applications. IEEE Sensors Journal, 20 (5), 2722–2729. https://doi.org/10.1109/jsen.2019.2951345
  6. Wang, A., Dara, R., Yousefinaghani, S., Maier, E., Sharif, S. (2023). A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing, 7 (2), 72. https://doi.org/10.3390/bdcc7020072
  7. Hajiakhoond Bidoki, N., Mantzaris, A. V., Sukthankar, G. (2019). An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity. Information, 10 (12), 394. https://doi.org/10.3390/info10120394
  8. Ertam, F., Kilincer, I. F., Yaman, O., Sengur, A. (2020). A New IoT Application for Dynamic WiFi based Wireless Sensor Network. 2020 International Conference on Electrical Engineering (ICEE). https://doi.org/10.1109/icee49691.2020.9249771
  9. Yahya, O. H., Alrikabi, H., Aljazaery, I. A. (2020). Reducing the Data Rate in Internet of Things Applications by Using Wireless Sensor Network. International Journal of Online and Biomedical Engineering (IJOE), 16 (03), 107. https://doi.org/10.3991/ijoe.v16i03.13021
  10. Mejjaouli, S., Babiceanu, R. F. (2015). RFID-wireless sensor networks integration: Decision models and optimization of logistics systems operations. Journal of Manufacturing Systems, 35, 234–245. https://doi.org/10.1016/j.jmsy.2015.02.005
  11. You, G., Zhu, Y. (2020). Structure and Key Technologies of Wireless Sensor Network. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). https://doi.org/10.1109/csrswtc50769.2020.9372727
  12. Taherdoost, H. (2023). Enhancing Social Media Platforms with Machine Learning Algorithms and Neural Networks. Algorithms, 16 (6), 271. https://doi.org/10.3390/a16060271
  13. Gutierrez-Osorio, C., González, F. A., Pedraza, C. A. (2022). Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers, 11 (9), 126. https://doi.org/10.3390/computers11090126
  14. Huang, J.-Y., Lee, W.-P., Lee, K.-D. (2022). Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning. Healthcare, 10 (4), 618. https://doi.org/10.3390/healthcare10040618
  15. Xu, Z., Qian, M. (2023). Predicting Popularity of Viral Content in Social Media through a Temporal-Spatial Cascade Convolutional Learning Framework. Mathematics, 11 (14), 3059. https://doi.org/10.3390/math11143059
  16. Abu-Salih, B., Al-Tawil, M., Aljarah, I., Faris, H., Wongthongtham, P., Chan, K. Y., Beheshti, A. (2021). Relational Learning Analysis of Social Politics using Knowledge Graph Embedding. Data Mining and Knowledge Discovery, 35 (4), 1497–1536. https://doi.org/10.1007/s10618-021-00760-w
  17. Malozyomov, B. V., Martyushev, N. V., Sorokova, S. N., Efremenkov, E. A., Valuev, D. V., Qi, M. (2024). Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks. Mathematics, 12 (3), 480. https://doi.org/10.3390/math12030480
  18. Shafqat, W., Byun, Y.-C. (2019). Topic Predictions and Optimized Recommendation Mechanism Based on Integrated Topic Modeling and Deep Neural Networks in Crowdfunding Platforms. Applied Sciences, 9 (24), 5496. https://doi.org/10.3390/app9245496
  19. Regulski, K., Opaliński, A., Swadźba, J., Sitkowski, P., Wąsowicz, P., Kwietniewska-Śmietana, A. (2024). Machine Learning Prediction Techniques in the Optimization of Diagnostic Laboratories’ Network Operations. Applied Sciences, 14 (6), 2429. https://doi.org/10.3390/app14062429
  20. Aljohani, A. (2023). Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility. Sustainability, 15 (20), 15088. https://doi.org/10.3390/su152015088
  21. Sánchez Lasheras, F. (2021). Predicting the Future-Big Data and Machine Learning. Energies, 14 (23), 8041. https://doi.org/10.3390/en14238041
  22. He, Z., Yu, J., Gu, T., Yang, D. (2024). Query execution time estimation in graph databases based on graph neural networks. Journal of King Saud University - Computer and Information Sciences, 36 (4), 102018. https://doi.org/10.1016/j.jksuci.2024.102018
  23. Zhu, L., Zhang, H., Bai, L. (2024). Hierarchical pattern-based complex query of temporal knowledge graph. Knowledge-Based Systems, 284, 111301. https://doi.org/10.1016/j.knosys.2023.111301
Using relational learning in exploring the effectiveness of using hashtags in future topics and user relations in X

Downloads

Published

2024-06-28

How to Cite

Rahmatika, A., Al-khowarizmi, A.- khowarizmi, Akrim, A., Nugroho, O., & Anu, T. A. (2024). Using relational learning in exploring the effectiveness of using hashtags in future topics and user relations in X. Eastern-European Journal of Enterprise Technologies, 3(2 (129), 62–68. https://doi.org/10.15587/1729-4061.2024.306726