Using relational learning in exploring the effectiveness of using hashtags in future topics and user relations in X
DOI:
https://doi.org/10.15587/1729-4061.2024.306726Keywords:
user relationships, future topics, mathematical models, graph queries, relational learningAbstract
This research has a research object, namely relational learning with a mathematical modeling approach from graph queries for exploring future topics and user relationships. The problem in this research is the large and varied number of tweets that are produced every day, where each use of hashtags always increases, which has an impact on the accumulation of data that needs to be processed to obtain information because users on social media X can interact to influence trends so as to solve the problem. This requires the application of relational learning by utilizing graph query mathematical models. The results obtained from this research are in the form of a model that can produce predictions of future topics and see user relationships based on interactions on social media with relationships between entities at interconnected nodes. In applying relational learning with mathematical models utilizing graph queries there will be a process of examining the relationships between entities, content and communication interactions in accordance with the definitions and theorems that have been described to observe each node. In relational learning, there will be each node according to the entity used, then the mathematical model with graph queries will connect all the entities to form a graph that can be used as a model for predicting future topics and relationships between users. This research is research with a level of novelty in applying graphical queries to mathematical models to predict future topics and applying relational learning to user relationships so that it can add information related to future communication. Graph queries aim to model a node between relations in the data so that it can represent a relationship between variables
References
- Wu, F., Wu, T., Yuce, M. R. (2019). Design and Implementation of a Wearable Sensor Network System for IoT-Connected Safety and Health Applications. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot.2019.8767280
- Liu, J., Zhao, Z., Ji, J., Hu, M. (2020). Research and application of wireless sensor network technology in power transmission and distribution system. Intelligent and Converged Networks, 1 (2), 199–220. https://doi.org/10.23919/icn.2020.0016
- Swamy, S. N., Jadhav, D., Kulkarni, N. (2017). Security threats in the application layer in IOT applications. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). https://doi.org/10.1109/i-smac.2017.8058395
- Shivalingagowda, C., Ahmad, H., Jayasree, P. V. Y., Sah, D. K. (2021). Wireless Sensor Network Routing Protocols Using Machine Learning. Lecture Notes in Networks and Systems, 99–120. https://doi.org/10.1007/978-981-16-0386-0_7
- Khutsoane, O., Isong, B., Gasela, N., Abu-Mahfouz, A. M. (2020). WaterGrid-Sense: A LoRa-Based Sensor Node for Industrial IoT Applications. IEEE Sensors Journal, 20 (5), 2722–2729. https://doi.org/10.1109/jsen.2019.2951345
- Wang, A., Dara, R., Yousefinaghani, S., Maier, E., Sharif, S. (2023). A Review of Social Media Data Utilization for the Prediction of Disease Outbreaks and Understanding Public Perception. Big Data and Cognitive Computing, 7 (2), 72. https://doi.org/10.3390/bdcc7020072
- Hajiakhoond Bidoki, N., Mantzaris, A. V., Sukthankar, G. (2019). An LSTM Model for Predicting Cross-Platform Bursts of Social Media Activity. Information, 10 (12), 394. https://doi.org/10.3390/info10120394
- Ertam, F., Kilincer, I. F., Yaman, O., Sengur, A. (2020). A New IoT Application for Dynamic WiFi based Wireless Sensor Network. 2020 International Conference on Electrical Engineering (ICEE). https://doi.org/10.1109/icee49691.2020.9249771
- Yahya, O. H., Alrikabi, H., Aljazaery, I. A. (2020). Reducing the Data Rate in Internet of Things Applications by Using Wireless Sensor Network. International Journal of Online and Biomedical Engineering (IJOE), 16 (03), 107. https://doi.org/10.3991/ijoe.v16i03.13021
- Mejjaouli, S., Babiceanu, R. F. (2015). RFID-wireless sensor networks integration: Decision models and optimization of logistics systems operations. Journal of Manufacturing Systems, 35, 234–245. https://doi.org/10.1016/j.jmsy.2015.02.005
- You, G., Zhu, Y. (2020). Structure and Key Technologies of Wireless Sensor Network. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). https://doi.org/10.1109/csrswtc50769.2020.9372727
- Taherdoost, H. (2023). Enhancing Social Media Platforms with Machine Learning Algorithms and Neural Networks. Algorithms, 16 (6), 271. https://doi.org/10.3390/a16060271
- Gutierrez-Osorio, C., González, F. A., Pedraza, C. A. (2022). Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers, 11 (9), 126. https://doi.org/10.3390/computers11090126
- Huang, J.-Y., Lee, W.-P., Lee, K.-D. (2022). Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning. Healthcare, 10 (4), 618. https://doi.org/10.3390/healthcare10040618
- Xu, Z., Qian, M. (2023). Predicting Popularity of Viral Content in Social Media through a Temporal-Spatial Cascade Convolutional Learning Framework. Mathematics, 11 (14), 3059. https://doi.org/10.3390/math11143059
- Abu-Salih, B., Al-Tawil, M., Aljarah, I., Faris, H., Wongthongtham, P., Chan, K. Y., Beheshti, A. (2021). Relational Learning Analysis of Social Politics using Knowledge Graph Embedding. Data Mining and Knowledge Discovery, 35 (4), 1497–1536. https://doi.org/10.1007/s10618-021-00760-w
- Malozyomov, B. V., Martyushev, N. V., Sorokova, S. N., Efremenkov, E. A., Valuev, D. V., Qi, M. (2024). Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks. Mathematics, 12 (3), 480. https://doi.org/10.3390/math12030480
- Shafqat, W., Byun, Y.-C. (2019). Topic Predictions and Optimized Recommendation Mechanism Based on Integrated Topic Modeling and Deep Neural Networks in Crowdfunding Platforms. Applied Sciences, 9 (24), 5496. https://doi.org/10.3390/app9245496
- Regulski, K., Opaliński, A., Swadźba, J., Sitkowski, P., Wąsowicz, P., Kwietniewska-Śmietana, A. (2024). Machine Learning Prediction Techniques in the Optimization of Diagnostic Laboratories’ Network Operations. Applied Sciences, 14 (6), 2429. https://doi.org/10.3390/app14062429
- Aljohani, A. (2023). Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility. Sustainability, 15 (20), 15088. https://doi.org/10.3390/su152015088
- Sánchez Lasheras, F. (2021). Predicting the Future-Big Data and Machine Learning. Energies, 14 (23), 8041. https://doi.org/10.3390/en14238041
- He, Z., Yu, J., Gu, T., Yang, D. (2024). Query execution time estimation in graph databases based on graph neural networks. Journal of King Saud University - Computer and Information Sciences, 36 (4), 102018. https://doi.org/10.1016/j.jksuci.2024.102018
- Zhu, L., Zhang, H., Bai, L. (2024). Hierarchical pattern-based complex query of temporal knowledge graph. Knowledge-Based Systems, 284, 111301. https://doi.org/10.1016/j.knosys.2023.111301
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Rahmatika, Al-khowarizmi Al-khowarizmi, Akrim Akrim, Okvi Nugroho, Tri Andre Anu
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.