Development of a method for assessing the state of dynamic objects using a population algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.308389

Keywords:

complex processes, unimodal functions, multimodal functions, complex and dynamic objects

Abstract

The object of the study is complex dynamic objects with a hierarchical structure. A method for assessing the state of dynamic objects using a population algorithm is proposed. The study is based on the snake optimization algorithm for finding a solution to the state of dynamic objects with a hierarchical structure. For training snake agents (SA), evolving artificial neural networks are used. The originality of the method lies in using additional advanced procedures that allow you:

– to determine the initial position of SA, taking into account the type of uncertainty by using a correction factor for the degree of awareness of the state of the initial situation in relation to the object of analysis;

– to take into account the initial velocity of each SA, which allows studying complex functions;

– to ensure the universality of SA food location search strategies, which allows classifying the type of data to be processed;

– to adjust the SA velocity by adjusting the ambient temperature, which allows priorizing the search for a solution in a certain plane;

– to explore the solution spaces of functions described by non-typical functions, using exploitation mode procedures;

– to flexibly adjust the transition from the SA fighting mode to the mating mode using the food saturation coefficient;

– to replace individuals unsuitable for search using the SA fertility rate;

– to conduct a simultaneous search for a solution in different directions, by changing the ambient temperature and adjusting the food saturation coefficient.

Modeling showed a 13–19 % increase in data processing efficiency by using additional improved procedures.

Author Biographies

Svitlana Kashkevich, National Aviation University

Senior Lecturer

Department of Computerized Management Systems

Ivan Kashkevych, Professional College of Engineering, Management and Land Management of the National Aviation University

Lecturer

Oleksii Kuvshynov, The National University of Defense of Ukraine

Doctor of Technical Sciences, Professor, Deputy head of Center

Centre for Military and Strategic Studies for Scientific Work

Vasyl Kuzavkov, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Sciences, Professor, Head of Department

Department of Construction of Telecommunication Systems

Yevhen Zhyvylo, National University “Yuri Kondratyuk Poltava Polytechnic

PhD, Associate Professor

Department of Computer and Information Technologies and Systems

Oksana Dmytriieva, Kharkiv National Automobile and Highway University

Doctor of Economic Sciences, Professor, Head of Department

Department of Economics and Entrepreneurship

Andrii Lebedynskyi, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Computer Systems

Andrii Pysarenko, Scientific-Research Institute of Military Intelligence

Leading Researcher

Yehor Zudikhin, University of Applied Sciences Technikum Wien

Bachelor of Computer Science Student

Faculty Computer Science & Applied Mathematics

Andrii Shyshatskyi, National Aviation University

Doctor of Technical Sciences, Senior Researcher, Associate Professor

Department of Computerized Management Systems

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
  8. Shyshatskyi, A., Stasiuk, T., Odarushchenko, E., Berezanska, K., Demianenko, H. (2023). Method of assessing the state of hierarchical objects based on bio-inspired algorithms. Advanced Information Systems, 7 (3), 44–48. https://doi.org/10.20998/2522-9052.2023.3.06
  9. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
  19. Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
  20. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
  21. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
  22. Petrovska, I., Kuchuk, H. (2023). Adaptive resource allocation method for data processing and security in cloud environment. Advanced Information Systems, 7 (3), 67–73. https://doi.org/10.20998/2522-9052.2023.3.10
  23. Braik, M., Ryalat, M. H., Al-Zoubi, H. (2021). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34 (1), 409–455. https://doi.org/10.1007/s00521-021-06392-x
  24. Khudov, H., Khizhnyak, I., Glukhov, S., Shamrai, N., Pavlii, V. (2024). The method for objects detection on satellite imagery based on the firefly algorithm. Advanced Information Systems, 8 (1), 5–11. https://doi.org/10.20998/2522-9052.2024.1.01
  25. Poliarush, O., Krepych, S., Spivak, I. (2023). Hybrid approach for data filtering and machine learning inside content management system. Advanced Information Systems, 7 (4), 70–74. https://doi.org/10.20998/2522-9052.2023.4.09
  26. Chalyi, S., Leshchynskyi, V. (2023). Possible evaluation of the correctness of explanations to the end user in an artificial intelligence system. Advanced Information Systems, 7 (4), 75–79. https://doi.org/10.20998/2522-9052.2023.4.10
  27. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
  28. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
  29. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
  30. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. https://doi.org/10.15587/1729-4061.2017.96321
  31. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
Development of a method for assessing the state of dynamic objects using a population algorithm

Downloads

Published

2024-08-30

How to Cite

Kashkevich, S., Kashkevych, I., Kuvshynov, O., Kuzavkov, V., Zhyvylo, Y., Dmytriieva, O., Lebedynskyi, A., Pysarenko, A., Zudikhin, Y., & Shyshatskyi, A. (2024). Development of a method for assessing the state of dynamic objects using a population algorithm . Eastern-European Journal of Enterprise Technologies, 4(3 (130), 29–36. https://doi.org/10.15587/1729-4061.2024.308389

Issue

Section

Control processes