Development of a method for increasing the efficiency of processing heterogeneous data using a metaheuristic algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.309126

Keywords:

unstructured data, artificial neural networks, swarm algorithms, unimodal and multimodal functions

Abstract

The problems of processing heterogeneous data are discontinuous, undifferentiated, and multimodal. The most common approaches to processing heterogeneous data are swarm intelligence algorithms (swarm algorithms). Given the above, classical gradient deterministic algorithms are inappropriate for solving the problems of processing heterogeneous data. The problem solved in the study is to increase the efficiency of processing heterogeneous data circulating in information systems, regardless of the number of data sources. The object of the study is hierarchical systems. A method for increasing the efficiency of processing heterogeneous data using a metaheuristic algorithm is proposed. The study is based on the reptile algorithm (RA) for processing heterogeneous data circulating in the system. For RA training, evolving artificial neural networks are used.

The originality of the proposed method lies in setting RA taking into account the uncertainty of the initial data, improved global and local search procedures. Also, the originality of the study lies in determining RA feeding locations, which allows prioritizing the search in a given direction. The next element in the originality of the study is the possibility of choosing an RA hunting strategy, which allows a rational use of available system computing resources. Another original element of the study is determining the initial velocity of each RA. This makes it possible to optimize the speed of exploration of each RA in a certain direction. The method provides a 15–19 % increase in data processing efficiency by using additional improved procedures. The proposed method should be used in processing large amounts of data

Author Biographies

Vitaliy Ragulin, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Computer Graphics

Salman Rasheed Owaid, Al-Taff University College

PhD, Assosiate Professor, Lecturer

Department of Computer Engineering

Heorhii Kuchuk, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Programming

Serhii Andriienko, Kharkiv National Automobile and Highway University

Lecturer

Department of Computer Graphics

Oleksandr Lytvynenko, Military Institute of Taras Shevchenko National University of Kyiv

PhD, Senior Researcher

Research Department

Research Center

Evgen Ivanov, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Computer Graphics

Anna Lyashenko, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Senior Researcher

Scientific Center

Alexander Momit, Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

Deputy Head of Research Department

Research Department of the Development of Anti-aircraft Missile Systems and Complexes

Oleksandr Gaman, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Adjunct

Scientific and Organizational Department

Taras Hurskyi, Scientific-Research Institute of Military Intelligence

PhD, Associate Professor

Head of Scientific-Research Department

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
  10. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
  11. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
  12. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
  13. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
  14. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
  15. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
  16. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  17. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
  18. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
  19. Maccarone, A. D., Brzorad, J. N., Stone, H. M. (2008). Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541–549. https://doi.org/10.1675/1524-4695-31.4.541
  20. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
  21. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
  22. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01
  23. Braik, M., Ryalat, M. H., Al-Zoubi, H. (2021). A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications, 34 (1), 409–455. https://doi.org/10.1007/s00521-021-06392-x
  24. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
  25. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
  26. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16
  27. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
  28. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
  29. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
  30. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. https://doi.org/10.15587/1729-4061.2017.96321
  31. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
  32. Shyshatskyi, A., Stasiuk, T., Kuzmenko, O. (2023). The Development of the Solution Search Method Based on the Improved Bee Colony Algorithm. Theoretical and Applied Cybersecurity, 5 (2). https://doi.org/10.20535/tacs.2664-29132023.2.278199
  33. Sova, O., Zhuravskyi, Y., Vakulenko, Y., Shyshatskyi, A., Salnikova, O., Nalapko, O. (2022). Development of methodological principles of routing in networks of special communication in conditions of fire storm and radio-electronic suppression. EUREKA: Physics and Engineering, 3, 159–166. https://doi.org/10.21303/2461-4262.2022.002434
Development of a method for increasing the efficiency of processing heterogeneous data using a metaheuristic algorithm

Downloads

Published

2024-08-30

How to Cite

Ragulin, V., Owaid, S. R., Kuchuk, H., Andriienko, S., Lytvynenko, O., Ivanov, E., Lyashenko, A., Momit, A., Gaman, O., & Hurskyi, T. (2024). Development of a method for increasing the efficiency of processing heterogeneous data using a metaheuristic algorithm. Eastern-European Journal of Enterprise Technologies, 4(3 (130), 21–28. https://doi.org/10.15587/1729-4061.2024.309126

Issue

Section

Control processes