Modeling of differential diagnosis classifiers of pathological states of the cardiovascular system

Authors

  • Євген Арнольдович Настенко Amosov National Institute of Cardiovascular Surgery N. Amosov str. 6, Kyiv, Ukraine, 03110, Ukraine https://orcid.org/0000-0002-1076-9337
  • Володимир Анатолійович Павлов National Technical University of Ukraine “Kyiv Polytechnic Institute” Pr. Pobedi, 37, Kiev, 03056, Ukraine https://orcid.org/0000-0002-6234-113X
  • Олена Костянтинівна Носовець National Technical University of Ukraine “Kyiv Polytechnic Institute” Pr. Pobedi, 37, Kiev, 03056, Ukraine https://orcid.org/0000-0003-1288-3528

DOI:

https://doi.org/10.15587/1729-4061.2014.31079

Keywords:

modeling, classifiers, logistic regression, discriminant analysis, group method of data handling

Abstract

The results of creating differential diagnosis classifiers of pathological states of the cardiovascular system are given in the paper. This task allows to solve the problem of creating non-invasive diagnosis method that allows to use repeated measurements, obtained in a state of unrest. A feature of this formulation is the classification of complex objects, each of which can overlap with other objects.

It is proposed to use the convolution of objects, obtained through the application of the modified combinatorial group method of data handling. Classification problem is solved by the "one-against-all" approach, i.e. a set of models, opposing each state to all other is modeled. The main purpose of the work was selecting the optimal modeling method, which allows to get the maximum accuracy on the training and test samples. As a result of the analysis, it was proved that the group method of data handling, which has shown the classification accuracy of over 90 % at the separation of all diagnoses is optimum for such problems.

Author Biographies

Євген Арнольдович Настенко, Amosov National Institute of Cardiovascular Surgery N. Amosov str. 6, Kyiv, Ukraine, 03110

D.Sc. (biol), chief of department

Department of information technology and mathematical modeling of physiological processes 

Володимир Анатолійович Павлов, National Technical University of Ukraine “Kyiv Polytechnic Institute” Pr. Pobedi, 37, Kiev, 03056

Ph.D. (techn), docent

Faculty of Biomedical Engineering

Department of Biomedical Cybernetics 

Олена Костянтинівна Носовець, National Technical University of Ukraine “Kyiv Polytechnic Institute” Pr. Pobedi, 37, Kiev, 03056

Assistant

Faculty of Biomedical Engineering

Department of Biomedical Cybernetics 

References

  1. Anishchenko, O. V. (2012). Medyko-demohrafichna sytuatsiya ta orhanizatsiya medychnoyi dopomohy naselennyu u 2011 rotsi. Ministerstvo okhorony zdorov`ya Ukrayiny, 103.
  2. Zabara, S. S., Filimonova, N. B., Zelenskiy, K. H. (2009). Metod vidilennya invariantnih oznak signaliv. Dopovidi Natsionalnoi akademii nauk Ukraini, 2, 49–55.
  3. Red'ko, I. N. (1996). Otsenka oblasty hlobal'noy ustoychyvosty uravnenyya mayatnykovoho typa metodamy teoryy klassyfykatsyy. 4 konferentsyya "Nelyneynie kolebanyya v mekhanycheskykh systemakh", 45–46.
  4. Red'ko, I. N., Shalfeev, V. D. (1992). Primenenie metodov teorii klassifikacii ob`ektov dlja ocenok oblastej sushhestvovanija ustanovivshihsja dvizhenij. Vestnik NNGU, ser. Radiofizika, 68–72.
  5. Cowley, A. W., Physiol, W. (1992). Long-term control of arterial blood pressure. Circular Researchers, 72 (1), 231–300.
  6. Euler, U. S., Liljestrand, G. (1996). Observations on the pulmonary arterial blood pressure. Acta Physiologica Scandinavica, 12 (4), 301–320. doi: 10.1111/j.1748-1716.1946.tb00389.x
  7. Arthur, C., Guyton, M. D., Thomas, G. (1992). Arterial pressure regulation. The American Journal of Medicine, 52 (5), 584–594.
  8. O'Rourke, M. (1990). Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension, 15 (4), 339–347. doi: 10.1161/01.hyp.15.4.339
  9. McKenna, M., Wolfson, S., Kuller, L. (1991). The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis, 87 (2), 119–128. doi: 10.1016/0021-9150(91)90014-t
  10. McVeigh, G. E., Bratteli, C. W., Morgan, D. J. (1999). Age-Related Abnormalities in Arterial Compliance Identified by Pressure Pulse Contour Analysis. Hypertension, 33 (6), 139–142. doi: 10.1161/01.hyp.33.6.1392
  11. Stepashko, V. S. (1981). Kombinatornyj algoritm MGUA s optimal'noj shemoj perebora modelej. Avtomatika, 3, 31–36.
  12. Nastenko, Ie. A., Knishov, G. V., Nosovets, O. K., Pavlov, V. A., Kondrashova, N. V. (2014). Combinatorial agorithm for constructing a parametric feature space for the classification of multidimensional models. Cybernetics and Systems Analysis, 50 (4), 627–633. doi: 10.1007/s10559-014-9651-3

Published

2014-12-19

How to Cite

Настенко, Є. А., Павлов, В. А., & Носовець, О. К. (2014). Modeling of differential diagnosis classifiers of pathological states of the cardiovascular system. Eastern-European Journal of Enterprise Technologies, 6(3(72), 30–34. https://doi.org/10.15587/1729-4061.2014.31079

Issue

Section

Control processes