Brewing unit time series analysis in the research of the complex system attractor properties

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.31094

Keywords:

determined chaos, phase space, correlation format, brewery, time series

Abstract

We have studied time series of a grout technology in making beer wort on the basis of grout temperature time series, using non-linear dynamics methods. We have developed algorithms for studying complex dynamic management systems as well as reconstructed attractors due to historical data on a brewing unit operation. Ultimately, we have estimated the Hurst index, the fractal volume, the delay time, the maximum phase space, and the correlation format. Our analysis of the indices has determined that the technological process of making beer wort has a complex non-linear behavior. This requires adequate methods and systems of synergetic management, which would be compatible with the physical nature of the object. This approach allows using natural mechanisms of the beer wort technology at full capacity, which saves energy and expenses.

Author Biographies

Микола Володимирович Чернецький, National university of food technologies Volodymyrska str. 68, Kyiv, Ukraine, 01033

PhD student

The department automation of process control

Василь Дмитрович Кишенько, National university of food technologies Volodymyrska str. 68, Kyiv, Ukraine, 01033

Candidate of technical science, associate professor

The department automation of process control

References

  1. Malinetskii, J., Potapov, A. (2000). Modern problems of nonlinear dynamics. Moscow: Editorial URSS, 336. doi: 10.5281/zenodo.12817
  2. Pupena, O., Elperіn, I. (2005). Іntegratsіya systems control. Food and Processing Industry, 1, 9‑11. doi: 10.5281/zenodo.12823
  3. Ladanyuk, A., Trehub, V. (2005). Modern automation systems beet sugar production, 5, 39‑41. doi: 10.5281/zenodo.12824
  4. Bamforth, C. W. (2006). Brewing. New technologies. Phys. Rev., 484. doi: 10.5281/zenodo.12815
  5. Schuster, G. (1988). Deterministic chaos, 240. doi: 10.5281/zenodo.12821
  6. Krstic, M., Smyshlyaev, A. (2008). Boundary control of PDEs. Phys. Rev., 192. doi: 10.5281/zenodo.12814
  7. Berger, P., Pomo, J., Vidal, C. (1991). Order in chaos. About deterministic approach to turbulence, 368. doi: 10.5281/zenodo.12813
  8. Mandelbrot, B. (2006). (Not) obedient market: fraktalnaya revolution in finance. Moscow, 400. doi: 10.5281/zenodo.12818
  9. Peters, E. (2000). Chaos and order in the capital markets. Moscow, 305. doi: 10.5281/zenodo.12819
  10. Cramer, J. (1975). Mathematical methods of statistics Moscow, 625. doi: 10.5281/zenodo.12816
  11. Grassberger, P., Procaccia, I. (1983). Characterization of strange attractors. Physical Review Letters, 50 (5), 346‑349. doi: 10.1103/physrevlett.50.346
  12. Nerenberg, M. A., Essex, C. (1990). Correlation dimension and systematic geometric effects. Physical Review A, 42 (12), 7065‑7074. doi: 10.1103/physreva.42.7065

Published

2014-12-17

How to Cite

Чернецький, М. В., & Кишенько, В. Д. (2014). Brewing unit time series analysis in the research of the complex system attractor properties. Eastern-European Journal of Enterprise Technologies, 6(2(72), 38–42. https://doi.org/10.15587/1729-4061.2014.31094