Identifying possible ways for adapting an open wagon for transporting containers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.311324

Keywords:

railroad transport, open wagon, structure adaptation, loading of a open wagon, longitudinal dynamics, container transportation

Abstract

The object of this study is the processes of perception and redistribution of loads in the supporting structure of a open wagon loaded with containers, taking into account the new scheme of their fastening.

For safe transportation of containers in an open wagon, it is suggested to use a removable module. This module works according to the principle of an intermediate adapter between the container and the open wagon body. Fastening of the module itself in the open wagon is carried out through the fitting stops, which are placed on the floor of the open wagon.

Mathematical modeling was carried out to determine the longitudinal dynamic load acting on the container fixed according to the new scheme in the open wagon. To this end, a mathematical model was built that characterizes the longitudinal movements of the "open wagon - removable module - container" system. Determination of the accelerations that act on the supporting structure of the open wagon loaded with containers was also carried out by means of computer simulation. Verification of the formed model of the dynamic load of the open wagon was carried out according to the F-criterion. Also, as part of the study, a modal analysis of the load-bearing structure of a open wagon loaded with containers was carried out, which made it possible to assess its traffic safety.

A feature of the results obtained as part of the research is that the proposed design of the removable module could be used not only for fastening containers but also for transportation of other types of cargo.

The field of practical application of the results is railroad transport, including other transportation industries. The conditions for the practical use of the results are a symmetrical scheme of loading the body of a open wagon with containers.

The results of this study will contribute to increasing the efficiency of container transportation and the profitability of railroad transport

Author Biographies

Sergii Panchenko, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Rector

Department of Automation and Computer Telecontrol of Trains

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Department of Wagon Engineering and Product Quality

Arsen Muradian, Odessa National Maritime University

PhD, Associate Professor

Department of Port Operation and Cargo Handling Technology

Yevhen Pelypenko, National Technical University "Kharkiv Polytechnic Institute"

PhD, Associate Professor

Department of Car and Tractor Industry

Pavlo Rukavishnykov, Ukrainian State University of Railway Transport

Senior Lecturer

Department of Heat Engineering, Heat Engines and Energy Management

Oleksii Demydiukov, Odessa National Maritime University

PhD Student

Department of Port Operation and Cargo Handling Technology

References

  1. Soloviova, L., Strelko, O., Isaienko, S., Soloviova, O., Berdnychenko, Y. (2020). Container Transport System as a Means of Saving Resources. IOP Conference Series: Earth and Environmental Science, 459 (5), 052070. https://doi.org/10.1088/1755-1315/459/5/052070
  2. Caban, J., Nieoczym, A., Gardyński, L. (2021). Strength analysis of a container semi-truck frame. Engineering Failure Analysis, 127, 105487. https://doi.org/10.1016/j.engfailanal.2021.105487
  3. Berescu, C., Fratila, C., Axinte, T., Diaconu, M., Cojocaru, R. (2020). The mechanism’s study of fixing a container on a freight wagon type Rgs. IOP Conference Series: Materials Science and Engineering, 916 (1), 012010. https://doi.org/10.1088/1757-899x/916/1/012010
  4. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. https://doi.org/10.3390/app13010079
  5. Reidemeister, O. H., Kalashnyk, V. O., Shykunov, O. A. (2016). Modernization as a way to improve the use of universal cars. Science and Transport Progress, 2 (62), 148–156. https://doi.org/10.15802/stp2016/67334
  6. Shaposhnyk, V., Shykunov, O., Reidemeister, A., Muradian, L., Potapenko, O. (2021). Determining the possibility of using removable equipment for transporting 20- and 40-feet-long containers on an universal platform wagon. Eastern-European Journal of Enterprise Technologies, 1 (7 (109)), 14–21. https://doi.org/10.15587/1729-4061.2021.225090
  7. Gerlici, J., Lovska, A., Vatulia, G., Pavliuchenkov, M., Kravchenko, O., Solčanský, S. (2023). Situational Adaptation of the Open Wagon Body to Container Transportation. Applied Sciences, 13 (15), 8605. https://doi.org/10.3390/app13158605
  8. Rzeczycki, A., Wiśnicki, B. (2016). Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load. Solid State Phenomena, 252, 81–90. https://doi.org/10.4028/www.scientific.net/ssp.252.81
  9. Dočkalíková, I., Cempírek, V., Indruchová, I. (2020). Multimodal Transport as a Substitution for Standard Wagons. Transportation Research Procedia, 44, 30–34. https://doi.org/10.1016/j.trpro.2020.02.005
  10. Nikitchenko, A., Artiukh, V., Shevchenko, D., Prakash, R. (2016). Evaluation of Interaction Between Flat Car and Container at Dynamic Coupling of Flat Cars. MATEC Web of Conferences, 73, 04008. https://doi.org/10.1051/matecconf/20167304008
  11. Gerlici, J., Vatulia, G., Lovska, A., Skurikhin, D., Harušinec, J., Suchánek, A., Ishchuk, V. (2023). The Strength of the Open Wagon Body when Transporting Containers. Proceedings of 27th International Scientific Conference. Transport Means 2023. Kaunas, 440–445. Available at: https://www.researchgate.net/publication/375060292_The_Strength_of_the_Open_Wagon_Body_when_Transporting_Containers
  12. Vorobiov, V. V., Vorobiova, L. D., Kyba, S. P. (2020). Osnovy prykladnoi teoriyi kolyvan. Kremenchuk: PP Shcherbatykh O.V., 156. Available at: http://document.kdu.edu.ua/metod/2020_2201.pdf
  13. Symonovskyi, V. I. (2012). Teoriya kolyvan. Sumy: Sumskyi derzhavnyi universytet, 71. Available at: https://core.ac.uk/reader/14059504
  14. Sobolenko, O. V., Petrechuk, L. M., Ivashchenko, Yu. S., Yehortseva, Ye. Ye. (2020). Metody rishennia matematychnykh zadach u seredovyshchi Mathcad. Dnipro, 60. Available at: https://nmetau.edu.ua/file/navch_posibn_mathcad_2020_petrechuk.pdf
  15. Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108.
  16. Soukup, J., Skočilas, J., Skočilasová, B., Dižo, J. (2017). Vertical Vibration of Two Axle Railway Vehicle. Procedia Engineering, 177, 25–32. https://doi.org/10.1016/j.proeng.2017.02.178
  17. Dižo, J. (2016). Analysis of a Goods Wagon Running on a Railway Test Track. Manufacturing Technology, 16 (4), 667–672. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/mt/16/4/667
  18. Koziar, M. M., Feshchuk, Yu. V., Parfeniuk, O. V. (2018). Kompiuterna hrafika: SolidWorks. Kherson: Oldi-plius, 252. Available at: https://ep3.nuwm.edu.ua/22175/1/Комп%27ютерна%20графіка.pdf
  19. Lovskaya, A. (2015). Computer simulation of wagon body bearing structure dynamics during transportation by train ferry. Eastern-European Journal of Enterprise Technologies, 3 (7 (75)), 9–14. https://doi.org/10.15587/1729-4061.2015.43749
  20. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Rybin, A., Kravchenko, O. (2023). Strength Assessment of an Improved Design of a Tank Container under Operating Conditions. Communications - Scientific Letters of the University of Zilina, 25 (3), B186–B193. https://doi.org/10.26552/com.c.2023.047
  21. Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. https://doi.org/10.15587/1729-4061.2022.266855
  22. Kondratiev, A., Píštěk, V., Smovziuk, L., Shevtsova, M., Fomina, A., Kučera, P. (2021). Stress–Strain Behaviour of Reparable Composite Panel with Step-Variable Thickness. Polymers, 13 (21), 3830. https://doi.org/10.3390/polym13213830
  23. Herych, M. S., Syniavska, O. O. (2021). Matematychna statystyka. Uzhhorod: DVNZ “UzhNU”, 146. Available at: https://dspace.uzhnu.edu.ua/jspui/handle/lib/34910
  24. Ohirko, O. I., Halaiko, N. V. (2017). Teoriya ymovirnostei ta matematychna statystyka. Lviv: LvDUVS, 292. Available at: https://dspace.lvduvs.edu.ua/bitstream/1234567890/629/1/теорія%20ймовірностей%20підручник.pdf
  25. Perehuda, O. V., Kapustian, O. A., Kurylko, O. B. (2022). Statystychna obrobka danykh. Kyiv, 103. Available at: http://www.mechmat.univ.kiev.ua/wp-content/uploads/2022/02/navch_pos_perehuda.pdf
Identifying possible ways for adapting a gondola car for transporting containers

Downloads

Published

2024-10-30

How to Cite

Panchenko, S., Lovska, A., Muradian, A., Pelypenko, Y., Rukavishnykov, P., & Demydiukov, O. (2024). Identifying possible ways for adapting an open wagon for transporting containers. Eastern-European Journal of Enterprise Technologies, 5(7 (131), 6–14. https://doi.org/10.15587/1729-4061.2024.311324

Issue

Section

Applied mechanics