Development of Fe-Cr-C alloys with high Mn content for bone implant

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.312442

Keywords:

Fe-Cr-C alloy, biomaterials, mechanical properties, corrosion resistance, Mn content, orthopedic implants

Abstract

The object of this study is to combine the properties of Mn and the advantages of Fe-Cr-C to improve biomaterial compatible characteristics. Three alloys of Fe-Cr-C with compositions of 12 wt. % Mn, 16 wt. % Mn, and 20 wt. % Mn, were investigated. Microstructural analysis was carried out using a scanning electron microscope (SEM), and a Vickers hardness test kit was used to evaluate the hardness. The pin-on-disc method was used for the dry slide wear test, and the corrosion test was carried out using the three-electrode cell polarization method. The hardness value of Fe-Cr-C alloy increased by 28.7 % with the increase of Mn content from 12 wt. % (231.8 VHN) to 20 wt. % (298.4 VHN). The tensile strength value increased by 30.3 % with an increase in Mn content from 12 wt. % (522.69 MPa) to 20 wt. % (680.89 MPa), while the strain value decreased by 30.9 %. However, impact toughness did somewhat decline, from 0.213 J/mm2 at 12 wt. % Mn to 0.169 J/mm2 at 20 wt. % Mn. The wear rate results for Fe-Cr-C 20 wt. % Mn 0.000156 mm3/kg. show a reduction of more than 15 wt. % when compared to Fe-Cr-C 12 wt. % Mn because of an increase in the hard-intermetallic area. Additionally, corrosion resistance improved significantly, with the corrosion rate decreasing from 0.005814 mm/yr at 12 wt. % Mn to 0.001780 mm/yr at 20 wt. % Mn, demonstrating that higher Mn content reduces material degradation in corrosive environments. Based on the experimental results, Fe-Cr-C 20 wt % Mn alloy has the highest mechanical and corrosion resistance of the three types of alloys. Fe-Cr-C with high Mn alloys are promising candidates for application as biomaterials for bone implants by optimizing the Mn content and corrosion resistance

Author Biographies

Ratna Kartikasari, Institut Teknologi Nasional Yogyakarta

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

Sugiarto Kadiman, Institut Teknologi Nasional Yogyakarta

Doktor of Electrical Engineering, Associate Professor

Department of Electrical Engineering

Rivan Muhfidin, Institut Teknologi Nasional Yogyakarta

Master of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Ihwanul Aziz, National Research and Innovation Agency (BRIN)

Master of Science, Researcher

Research Center for Accelerator Technology, Nuclear Energy Research Organization

Triyono Triyono, Universitas Sebelas Maret

Doctor of Mechanical Engineering, Professor

Department of Mechanical Engineering

References

  1. Wang, W., Ouyang, Y., Poh, C. K. (2011). Orthopaedic Implant Technology: Biomaterials from Past to Future. Annals of the Academy of Medicine, Singapore, 40 (5), 237–244. https://doi.org/10.47102/annals-acadmedsg.v40n5p237
  2. Poinescu, A. A., Ion, R.-M. (2018). 316L Stainless Steel/Hydroxyapatite Composite Materials for Biomedical Applications. Hydroxyapatite - Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets. https://doi.org/10.5772/intechopen.71490
  3. Ali, S., Abdul Rani, A. M., Mufti, R. A., Hastuty, S., Hussain, M., Shehzad, N. et al. (2019). An Efficient Approach for Nitrogen Diffusion and Surface Nitriding of Boron-Titanium Modified Stainless Steel Alloy for Biomedical Applications. Metals, 9 (7), 755. https://doi.org/10.3390/met9070755
  4. Salahinejad, E., Hadianfard, M. J., Macdonald, D. D., Sharifi-Asl, S., Mozafari, M., Walker, K. J. et al. (2013). In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants. PLoS ONE, 8 (4), e61633. https://doi.org/10.1371/journal.pone.0061633
  5. Kartikasari, R., Subardi, A., Muhfidin, R., Aziz, I., Effendy, M., Triyono, T., Diharjo, K. (2023). Development of Fe-13.8Cr-8.9Mn alloy for steel biomaterials. Eastern-European Journal of Enterprise Technologies, 6 (12 (126)), 6–15. https://doi.org/10.15587/1729-4061.2023.293009
  6. Mahmoud, E. R. I., Shaharoun, A., Gepreel, M. A., Ebied, S. (2022). Phase Prediction, Microstructure and Mechanical Properties of Fe–Mn–Ni–Cr–Al–Si High Entropy Alloys. Metals, 12 (7), 1164. https://doi.org/10.3390/met12071164
  7. Tiwar, S., Mishra, S. B. (2018). Corrosion of Stainless Steel and its Prevention through Surface Modification for Biomedical Application: A Review. Asian Journal of Engineering and Applied Technology, 7 (2), 60–66. https://doi.org/10.51983/ajeat-2018.7.2.954
  8. Nagarajan, S., Mohana, M., Sudhagar, P., Raman, V., Nishimura, T., Kim, S. et al. (2012). Nanocomposite Coatings on Biomedical Grade Stainless Steel for Improved Corrosion Resistance and Biocompatibility. ACS Applied Materials & Interfaces, 4 (10), 5134–5141. https://doi.org/10.1021/am301559r
  9. Talha, M., Behera, C. K., Sinha, O. P. (2013). A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Science and Engineering: C, 33 (7), 3563–3575. https://doi.org/10.1016/j.msec.2013.06.002
  10. Gregorutti, R. W., Grau, J. E., Sives, F., Elsner, C. I. (2015). Mechanical, electrochemical and magnetic behaviour of duplex stainless steel for biomedical applications. Materials Science and Technology, 31 (15), 1818–1824. https://doi.org/10.1179/1743284715y.0000000017
  11. Al-Zoubi, N., Li, X., Schönecker, S., Johansson, B., Vitos, L. (2014). Influence of manganese on the bulk properties of Fe-Cr-Mn alloys: a first-principles study. Physica Scripta, 89 (12), 125702. https://doi.org/10.1088/0031-8949/89/12/125702
  12. Ha, H.-Y., Jang, M.-H., Lee, T.-H. (2016). Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt%Cr-based alloys. Electrochimica Acta, 191, 864–875. https://doi.org/10.1016/j.electacta.2016.01.118
  13. Yuan, Y., Wu, Y., Yang, Z., Liang, X., Lei, Z., Huang, H. et al. (2019). Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Materials Research Letters, 7 (6), 225–231. https://doi.org/10.1080/21663831.2019.1584592
  14. Allain, J. P., Echeverry-Rendón, M. (2018). Surface treatment of metallic biomaterials in contact with blood to enhance hemocompatibility. Hemocompatibility of Biomaterials for Clinical Applications, 279–326. https://doi.org/10.1016/b978-0-08-100497-5.00008-2
  15. Rasouli, D., Kermanpur, A., Najafizadeh, A. (2019). Developing high-strength, ductile Ni-free Fe–Cr–Mn–C–N stainless steels by interstitial-alloying and thermomechanical processing. Journal of Materials Research and Technology, 8 (3), 2846–2853. https://doi.org/10.1016/j.jmrt.2018.12.026
  16. Kartikasari, R., Effendy, M. (2021). Surface characterization of Fe–10Al–25Mn alloy for biomaterial applications. Journal of Materials Research and Technology, 15, 409–415. https://doi.org/10.1016/j.jmrt.2021.08.006
  17. Eliaz, N. (2019). Corrosion of Metallic Biomaterials: A Review. Materials, 12 (3), 407. https://doi.org/10.3390/ma12030407
  18. Borgioli, F., Galvanetto, E., Bacci, T. (2016). Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels. Vacuum, 127, 51–60. https://doi.org/10.1016/j.vacuum.2016.02.009
  19. Yang, K., Ren, Y. (2010). Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 11 (1), 014105. https://doi.org/10.1088/1468-6996/11/1/014105
  20. Muñoz, A., Costa, M. (2012). Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity. Toxicology and Applied Pharmacology, 260 (1), 1–16. https://doi.org/10.1016/j.taap.2011.12.014
Development of Fe-Cr-C alloys with high Mn content for bone implant

Downloads

Published

2024-10-30

How to Cite

Kartikasari, R., Kadiman, S., Muhfidin, R., Aziz, I., & Triyono, T. (2024). Development of Fe-Cr-C alloys with high Mn content for bone implant. Eastern-European Journal of Enterprise Technologies, 5(12 (131), 31–38. https://doi.org/10.15587/1729-4061.2024.312442

Issue

Section

Materials Science