Devising an analytical method for estimating aircraft positioning accuracy by an infocommunication network of optoelectronic stations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.312762

Keywords:

optoelectronic station, infocommunication network, airspace monitoring, aerial vehicles

Abstract

The object of this study is the monitoring processes of airspace in the visible and infrared frequency ranges using an infocommunication network of optoelectronic tracking stations.

The problem addressed is the assessment of accuracy in positioning aerial vehicles in airspace, considering random and systematic errors in video surveillance.

The proposed method allows for the analytical evaluation of variance in the coordinates of aerial vehicles in airspace at any given moment, depending on the variance in errors from all components of the video surveillance process.

The following results are reported:

– mathematical models for both open and covert video surveillance by the infocommunication network of optoelectronic stations based on the trajectories of aerial vehicles, which enable the estimation of their coordinates for each moment of video surveillance.

– analytical relationships between the variance of geolocation of aerial vehicles and the variance of errors in all components of the video surveillance process.

A key feature of the method is its practical independence on the type and size of aerial vehicles. The method requires the availability of metrological characteristics of the optoelectronic station instruments and synchronized measurements of azimuth, elevation angle (for covert), and slant range (for open video surveillance).

The numerical values of the root mean square deviations of the positioning errors of aerial vehicles under various video surveillance conditions range from 0.1 to 0.35 meters, confirming the effectiveness of using the infocommunication network of optoelectronic stations as an instrumental tool for high-precision trajectory measurements.

Author Biographies

Andriy Tevyashev, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor

Department of Applied Mathematics

Oleg Zemlyaniy, O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine

PhD, Senior Researcher

Department of Nonlinear Dynamics of Electronic Systems

Igor Shostko, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences

V.V. Popovsky Department of Infocommunication Engineering

Dmytro Kostaryev, Kharkiv National University of Radio Electronics

PhD

Department of Applied Mathematics

Anton Paramonov, Kharkiv National University of Radio Electronics

PhD Student

Department of Applied Mathematics

References

  1. Dodonov, A. G., Putyatin, V. G., Valetchik, V. A. (2004). Obrabotka opticheskih izmereniy traektorii letatel'nyh obektov. Reiestratsiya, zberihannia i obrobka danykh, 6 (1), 38–52. Available at: http://dspace.nbuv.gov.ua/handle/123456789/50702
  2. Putyatin, V. G., Dodonov, V. A. (2017). Ob odnoy zadache vysokotochnyh traektornyh izmereniy opticheskimi sredstvami. Reiestratsiya, zberihannia i obrobka danykh, 19 (2), 36–54. Available at: http://dspace.nbuv.gov.ua/handle/123456789/131676?show=full
  3. Dodonov, A. G., Putyatin, V. G., Valetchik, V. A. (2006). Postroenie informatsionno-analiticheskoy sistemy nauchno-issledovatel'skogo ispytatel'nogo poligona. Upravlyayuschie sistemy i mashiny, 4, 3–14.
  4. Shostko, I., Teviashev, A., Kulia, Y., Koliadin, A. (2020). Optical-electronic system of automatic detection and higt-precise tracking of aerial objects in real-time. Computer Modeling and Intelligent Systems, 2608, 784–803. https://doi.org/10.32782/cmis/2608-59
  5. Tevyashev, A., Shostko, I., Neofitnyi, M., Koliadin, A. (2019). Laser Opto-Electronic Airspace Monitoring System in the Visible and Infrared Ranges. 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), 20, 170–173. https://doi.org/10.1109/apuavd47061.2019.8943887
  6. Tevjashev, A. D., Shostko, I. S., Neofitnyi, M. V., Kolomiyets, S. V., Kyrychenko, I. Yu., Pryimachov, Yu. D. (2019). Mathematical model and method of optimal placement of optical-electronic systems for trajectory measurements of air objects at test. Odessa Astronomical Publications, 32, 171–175. https://doi.org/10.18524/1810-4215.2019.32.182231
  7. Shostko, I., Tevyashev, A., Neofitnyi, M., Kulia, Y. (2020). Information-Measuring System of Polygon Based on Wireless Sensor Infocommunication Network. Data-Centric Business and Applications, 649–674. https://doi.org/10.1007/978-3-030-43070-2_28
  8. Shostko, I., Tevyashev, A., Neofitnyi, M., Ageyev, D., Gulak, S. (2018). Information and Measurement System Based on Wireless Sensory Infocommunication Network for Polygon Testing of Guided and Unguided Rockets and Missiles. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 705–710. https://doi.org/10.1109/infocommst.2018.8632084
  9. Kondrat, V., Kostenko, O., Kornienko, O. (2018). The analysis optical-electronic means of investigation and the direction of their perfection for the purpose of increase of efficiency of fighting application armament and military equipment. Zbirnyk Naukovykh Prats Kharkivskoho Natsionalnoho Universytetu Povitrianykh Syl, 2 (56), 66–71. https://doi.org/10.30748/zhups.2018.56.08
  10. Lepikh, Ya. I., Santoniy, V. I., Budiyanska, L. M., Ivanchenko, I. O., Yanko, V. V. (2019). Optyko-elektronni systemy blyzhnoi lokatsiyi. Odesa: Odes. nats. un-t im. I. I. Mechnykova, 294. Available at: https://dspace.onu.edu.ua/server/api/core/bitstreams/54803387-9f29-431d-b8a5-546ad9e189fc/content
  11. Optychni vymiriuvannia (2014). Kyiv: NTUU «KPI», 190. Available at: https://ooep.kpi.ua/downloads/disc/oi/oms.pdf
  12. Zhdanyuk, B. F. (1978). Osnovy statisticheskoy obrabotki traektornyh izmereniy. M.: Sovetskoe radio, 384. Available at: http://libarch.nmu.org.ua/handle/GenofondUA/72515
  13. Shapiro, L., Stockman, D. (2013). Computer vision. PRENTICE HALL, 752. Available at: https://github.com/MaximovaIrina/picture_processing/blob/master/Шапиро%20Л.%20Компьютерное%20зрение.pdf
  14. Richard, S. (2010). Computer Vision: Algorithms and Applications. Springer, 957. Available at: https://vim.ustc.edu.cn/_upload/article/files/d4/87/71e9467745a5a7b8e80e94007d1b/4cd69b21-85d3-43ba-9935-fd9ae33da82b.pdf
  15. Zabulonov, Yu. L., Burtnyak, V. M., Odukalets, L. A. (2020). System of Automated Operative Control of Radiation Situation of Fast Reaction on the Literal Apparatus Base. Science and Innovation, 16 (3), 39–46. https://doi.org/10.15407/scin16.03.039
  16. Botsiura, O., Zakharov, I., Neyezhmakov, P. (2018). Reduction of the measurand estimate bias for nonlinear model equation. Journal of Physics: Conference Series, 1065, 212002. https://doi.org/10.1088/1742-6596/1065/21/212002
  17. Zakharov, I. P., Botsyura, O. A. (2019). Calculation of Expanded Uncertainty in Measurements Using the Kurtosis Method when Implementing a Bayesian Approach. Measurement Techniques, 62 (4), 327–331. https://doi.org/10.1007/s11018-019-01625-x
  18. Zakharov, I. P., Neyezhmakov, P. I., Botsiura, O. A. (2019). Reduction of the bias of measurement uncertainty estimates with significant non-linearity of a model equation. Journal of Physics: Conference Series, 1379 (1), 012013. https://doi.org/10.1088/1742-6596/1379/1/012013
  19. Lytvynenko, A. S., Petchenko, H. O., Liashenko, O. M., Didenko, O. M. (2021). Rozrakhunok i konstruiuvannia optyko-elektronnykh pryladiv. Kharkiv: KhNUMH im. O. M. Beketova, 139. Available at: https://eprints.kname.edu.ua/61225/1/18%20экз%20Розрахунок%202018%20%20печ.%2012Н.pdf
Devising an analytical method for estimating aircraft positioning accuracy by an infocommunication network of optoelectronic stations

Downloads

Published

2024-10-23

How to Cite

Tevyashev, A., Zemlyaniy, O., Shostko, I., Kostaryev, D., & Paramonov, A. (2024). Devising an analytical method for estimating aircraft positioning accuracy by an infocommunication network of optoelectronic stations. Eastern-European Journal of Enterprise Technologies, 5(9 (131), 36–48. https://doi.org/10.15587/1729-4061.2024.312762

Issue

Section

Information and controlling system