Organizing the automated system of dispatch control over pump units at water pumping stations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.313531

Keywords:

water supply, topology, pump unit, PLC, SCADA, TIA Portal, Sinamics, PID

Abstract

The design and operation of modern dispatch control systems for pumping units involves comprehensive solution to separate engineering, technical, and scientific problems.

The object of research is information processes enabling the operational modes of electrically driven pumping units at water pumping stations.

This paper solves the scientific and technical task related to developing topology, hardware, and software tools, control algorithms, dispatch interface, and researching the modes of operation of pumping units in dispatch control systems at water pumping stations.

Algorithms for controlling pumping units have been implemented, the advantage of which is the possibility of automated calculation of parameters for technological PID-controllers, taking into account the current electrical parameters of the frequency-controlled electric drive of pumping units and operating conditions.

The WEB-oriented dispatch interface of the SCADA-based pumping unit control system was designed and tested, which enables control process in real time.

Features of the developed dispatch control system are improved topology, expanded functionality, energy-saving control modes, and the possibility of further modernization based on the principles of standardization and unification of hardware and software tools and design procedures.

The developed dispatch control system for pumping units at water pumping stations has been implemented and is successfully operated at an industrial water supply enterprise.

The results provided for an increase in technical and economic indicators during the operation of technological equipment due to the efficiency of control and management procedures, energy-saving operational modes of the frequency-controlled electric drive of pumping units.

Author Biographies

Leonid Zamikhovskyi, Ivano-Frankivsk National Technical University of Oil and Gas

Doctor of Technical Sciences, Professor, Head of Department

Department of Information and Telecommunication Technology and Systems

Mykola Nykolaychuk, Ivano-Frankivsk National Technical University of Oil and Gas

PhD, Associate Professor

Department of Information and Telecommunication Technology and Systems

Ivan Levytskyi, Ivano-Frankivsk National Technical University of Oil and Gas

PhD

Department of Information and Telecommunication Technology and Systems

References

  1. Syufrijal, S., Rif’an, M., Media’s, E. (2019). Construction design system of constant pressure control in water distribution system with PID method using PLC based on IoT. Journal of Physics: Conference Series, 1402 (2), 022060. https://doi.org/10.1088/1742-6596/1402/2/022060
  2. Ta, V.-P., Truong, D.-N., Nhan, N.-T. (2022). An Innovative Approach for Water Distribution Systems. Intelligent Automation & Soft Computing, 32 (3), 1605–1615. https://doi.org/10.32604/iasc.2022.022374
  3. Taimaingam, S., Pannil, P. (2024). Comprehensive performance evaluation of profibus and profinet in PLC-based control systems. (2024) ICIC Express Letters. Part B: Applications, 15 (7), 687–699. https://doi.org/10.24507/icicelb.15.07.687
  4. Vadi, S., Bayindir, R., Toplar, Y., Colak, I. (2022). Induction motor control system with a Programmable Logic Controller (PLC) and Profibus communication for industrial plants – An experimental setup. ISA Transactions, 122, 459–471. https://doi.org/10.1016/j.isatra.2021.04.019
  5. Kaittan, K. H., Mohammed, S. J. (2024). PLC-SCADA Automation of Inlet Wastewater Treatment Processes: Design, Implementation, and Evaluation. Journal Européen Des Systèmes Automatisés, 57 (3), 787–796. https://doi.org/10.18280/jesa.570317
  6. Hasan, B., Mohani, S. S.-H., Hussain, S. S., Yasin, S., Alvi, W. A., Saeed, O. (2019). Implementation of Supervisory Control and Data Acquisition - SCADA on a PLC and VFD Controlled Digital Mixing Plant Using TIA Portal. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), 2, 1–6. https://doi.org/10.1109/iceest48626.2019.8981705
  7. V.K., A. S., Subramaniam, U., Madurai Elavarasan, R., Raju, K., Shanmugam, P. (2021). Sensorless parameter estimation of VFD based cascade centrifugal pumping system using automatic pump curve adaption method. Energy Reports, 7, 453–466. https://doi.org/10.1016/j.egyr.2021.01.002
  8. Ahmed, A., Moharam, B., Rashad, E. (2018). Power Saving of Multi Pump-Motor Systems Using Variable Speed Drives. 2018 Twentieth International Middle East Power Systems Conference (MEPCON), 839–844. https://doi.org/10.1109/mepcon.2018.8635157
  9. Rata, M., Rata, G. (2018). An Efficient Method for Studyingthe Motion Graphs optimization in Electric Drive Systems. 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), ii, 0465–0469. https://doi.org/10.1109/icepe.2018.8559808
  10. Grecu, D.-L., Popescu, S.-L. (2015). Hard/Soft simulator for electric engines controlled with Siemens automates. 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), P-109-P-116. https://doi.org/10.1109/ecai.2015.7301263
  11. Salkić, A., Muhović, H., Jokić, D. (2022). Siemens S7-1200 PLC DC Motor control capabilities. IFAC-PapersOnLine, 55 (4), 103–108. https://doi.org/10.1016/j.ifacol.2022.06.017
  12. Zhengtang, L., Xiangdong, L., Lin, Z. (2020). The motor testing system design based on SINAMICS S120 inverter. Journal of Physics: Conference Series, 1550 (4), 042074. https://doi.org/10.1088/1742-6596/1550/4/042074
  13. Beran, L., Diblik, M. (2016). Indirect torque measurement using industrial vector control frequency converter. 2016 17th International Carpathian Control Conference (ICCC), 1, 48–53. https://doi.org/10.1109/carpathiancc.2016.7501065
  14. Daniun, M., Awtoniuk, M., Sałat, R. (2017). Implementation of PID autotuning procedure in PLC controller. ITM Web of Conferences, 15, 05009. https://doi.org/10.1051/itmconf/20171505009
  15. Gabor, G., Livint, G. (2022). Implementation of a PID Controller Using Siemens PLC. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE), 593–596. https://doi.org/10.1109/epe56121.2022.9959869
  16. Slavicek, L., Balda, P., Schlegel, M. (2021). Comparison of Siemens and REX Controls PI(D) Autotuners. 2021 23rd International Conference on Process Control (PC), 1, 212–218. https://doi.org/10.1109/pc52310.2021.9447480
  17. Elizabeth, S.-J., Wilson, S.-O., Ana, T.-P., José, T.-C. (2024). Proportional Integral and Derivative Auto Tuning of Industrial Controllers Using the Relay Feedback Method. Good Practices and New Perspectives in Information Systems and Technologies, 96–107. https://doi.org/10.1007/978-3-031-60227-6_9
  18. SIMATIC STEP 7 Basic/Professional V17 and SIMATIC WinCC V17. Available at: https://support.industry.siemens.com/cs/document/109798671/simatic-step-7-basic-professional-v17-and-simatic-wincc-v17?dti=0&lc=en-UA
  19. Zamikhovskyi, L. M., Nykolaichuk, M. Ya., Levytskyi, I. T. (2017). Avtomatyzovana systema chastotnoho keruvannia nasosnymy ahrehataty z funktsiyamy dyspetcheryzatsiyi. Intelektualnyi produkt vchenykh, vynakhidnykiv i ratsionalizatoriv Prykarpattia. Shchorichnyi kataloh naivahomishykh vynakhodiv, korysnykh modelei, promyslovykh zrazkiv i ratsionalizatorskykh propozytsiy. Ivano-Frankivsk, 77–81.
  20. Function Manual. Simatic. Profinet. PROFINET with STEP 7. Available at: https://cache.industry.siemens.com/dl/files/856/49948856/att_897210/v1/profinet_step7_v18_function_manual_en-US_en-US.pdf
  21. SIMATIC S7 S7-1200 Programmable controller. Available at: https://support.industry.siemens.com/cs/document/109797241/simatic-s7-s7-1200-programmable-controller?dti=0&lc=en-UA
  22. SINAMICS G: Speed Control of a G110M /G115D/G120 with S7-1200 via PROFINET with Safety Integrated and HMI. Available at: https://support.industry.siemens.com/cs/document/70155469/sinamics-g-speed-control-of-a-g110m-g115d-g120-with-s7-1200-via-profinet-with-safety-integrated-and-hmi?dti=0&lc=en-UA
  23. Bee, L. (2022). PLC and HMI Development with Siemens TIA Portal. Develop PLC and HMI programs using standard methods and structured approaches with TIA Portal V17. Packt Publishing Ltd., 436.
  24. PID control with PID_Compact. SIMATIC S7-1200 / S7-1500 + TIA Portal V17. Entry-ID: 100746401, V3.0, 12/2022. Available at: https://cache.industry.siemens.com/dl/files/401/100746401/att_1124946/v2/100746401_S71x00_PidCompact_DOC_V3.0_en.pdf
  25. PID Control with PID_Compact for SIMATIC S7-1200/S7-1500. Available at: https://support.industry.siemens.com/cs/document/100746401/pid-control-with-pid_compact-for-simatic-s7-1200-s7-1500?dti=0&lc=en-US
  26. SINAMICS G: Controlling a speed axis with the “SINA_SPEED” block. Available at: https://support.industry.siemens.com/cs/document/109485727/sinamics-g-controlling-a-speed-axis-with-the-%E2%80%9Csina_speed%E2%80%9D-block?dti=0&lc=en-UA
  27. Closed-Loop Control of Simulated Controlled Systems in the S7-1500 with PID_Compact V2. Available at: https://support.industry.siemens.com/cs/document/79047707/closed-loop-control-of-simulated-controlled-systems-in-the-s7-1500-with-pid_compact-v2?dti=0&lc=en-UA
  28. Nykolaichuk, M. Ya. (2014). Orhanizatsiya i doslidzhennia elementiv komunikatsiynoho seredovyshcha WEB-oriientovanykh system upravlinnia rozpodilenymy tekhnolohichnymy obiektamy. Metody ta prylady kontroliu yakosti, 2 (33), 133–138. Available at: http://elar.nung.edu.ua/handle/123456789/3344
  29. SIMATIC HMI WinCC (TIA Portal) WinCC Engineering V17 – Communication. Available at: https://support.industry.siemens.com/cs/document/109794203/simatic-hmi-wincc-(tia-portal)-wincc-engineering-v17-%E2%80%93-communication?dti=0&lc=en-UA
  30. SIMATIC HMI WinCC (TIA Portal) WinCC Engineering V17 – Options. Available at: https://support.industry.siemens.com/cs/document/109794201/simatic-hmi-wincc-(tia-portal)-wincc-engineering-v17-%E2%80%93-options?dti=0&lc=en-UA
Organizing the automated system of dispatch control over pump units at water pumping stations

Downloads

Published

2024-10-30

How to Cite

Zamikhovskyi, L., Nykolaychuk, M., & Levytskyi, I. (2024). Organizing the automated system of dispatch control over pump units at water pumping stations. Eastern-European Journal of Enterprise Technologies, 5(2 (131), 61–75. https://doi.org/10.15587/1729-4061.2024.313531