Design of a new film with predefined properties based on chitosan

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.313889

Keywords:

biopolymers, chitosan, film-forming solutions, packaging films, combined packaging, bacteriostatic properties

Abstract

Synthetic and chitosan-based polymer films were selected as the object of this study. Chitosan is a natural non-toxic oligosaccharide of animal origin capable of biological destruction. The task addressed in this work is to design a chitosan-based film with increased bacteriostatic properties for use in combined packaging material as a protective layer. The use of such films would provide for the biodegradability of packaging materials, which could make it possible to reduce the use of synthetic polymers in packaging and improve the environment.

A feature of the proposed method is that a decoction of yarrow grass is used as a chitosan solvent, which leads to the acquisition of bacteriostatic properties by the films. It has been established that the highest bacteriostatic effect is achieved in this case. The results of the research showed a significant growth retardation zone of E. coli, B. cereus, B. subtilis, P. aeruginosa, S. aureus, C. albicans, Saccharomyces and Lactobacillus strains.

The set of studies made it possible to optimize the recipe composition of films based on chitosan (%): chitosan – 2.0...2.5, glycerin – 1.0...1.5, decoction of yarrow grass – 96...97 (according to the ratio of medicinal plant raw materials:water – 1:10).

It was determined that the values of indicators of the destructive stress at the rupture of the designed films (14.0...16.0 MPa) exceed the permissible minimum, which should be 13.7 MPa for polymer films.

The designed films are not intended for independent use as packaging material but should be applied as part of combined packaging as a protective layer.

The scope of application of the current research results is the packaging of food products, namely fruit and vegetable pastes and sauces.

Author Biographies

Antonina Dubinina, National University "Zaporizhzhia Polytechnic"

Doctor of Technical Sciences, Professor

Department of Tourism, Hotel and Restaurant Business

Valentyna Zaytseva, National University "Zaporizhzhia Polytechnic"

PhD, Professor

Department of Tourism, Hotel and Restaurant Business

Svitlana Lehnert, National University "Zaporizhzhia Polytechnic"

Doctor of Technical Sciences

Department of Tourism, Hotel and Restaurant Business

Andriy Vindyk, National University "Zaporizhzhia Polytechnic"

Doctor of Pedagogical Sciences, Professor

Department of Tourism, Hotel and Restaurant Business

Oleksander Cherevko, State Biotechnological University

Doctor of Technical Sciences

Advisor to the Rector

Larysa Tatar, State Biotechnological University

PhD

Department of Trade, Hotel and Restaurant and Customs Affairs

Olena Skyrda, State Biotechnological University

PhD

Department of Trade, Hotel and Restaurant and Customs Affairs

Svitlana Prasol, State Biotechnological University

PhD, Associate Professor

Department of Equipment and Engineering for Processing and Food Industries

References

  1. Hafez, A. I. (2023). Chemical Modifications of Chitosan Biopolymer as Poly Electrolyte Membranes for Full Cells: Article review. Water, Energy and Environment Journal, 4 (1), 1–16. Available at: https://www.naturalspublishing.com/Article.asp?ArtcID=27249
  2. Sutharsan, J., Zhao, J. (2022). Physicochemical and Biological Properties of Chitosan Based Edible Films. Food Reviews International, 39 (9), 6296–6323. https://doi.org/10.1080/87559129.2022.2100416
  3. Elnaggar, E. M., Abusaif, M. S., Abdel-Baky, Y. M., Ragab, A., Omer, A. M., Ibrahim, I., Ammar, Y. A. (2024). Insight into divergent chemical modifications of chitosan biopolymer: Review. International Journal of Biological Macromolecules, 277, 134347. https://doi.org/10.1016/j.ijbiomac.2024.134347
  4. Cazón, P., Vázquez, M. (2019). Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environmental Chemistry Letters, 18 (2), 257–267. https://doi.org/10.1007/s10311-019-00936-3
  5. Lauriano Souza, V. G., Rodrigues, P. F., Duarte, M. P., Fernando, A. L. (2018). Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts. Journal of Renewable Materials. https://doi.org/10.7569/jrm.2018.634104
  6. Zhang, W., Li, X., Jiang, W. (2020). Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. International Journal of Biological Macromolecules, 154, 1205–1214. https://doi.org/10.1016/j.ijbiomac.2019.10.275
  7. Gomes, L. C., Faria, S. I., Valcarcel, J., Vázquez, J. A., Cerqueira, M. A., Pastrana, L. et al. (2021). The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 19 (7), 384. https://doi.org/10.3390/md19070384
  8. Mohammadi, A., Hashemi, M., Masoud Hosseini, S. (2016). Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT - Food Science and Technology, 71, 347–355. https://doi.org/10.1016/j.lwt.2016.04.010
  9. Tan, M., Zhong, X., Xue, H., Cao, Y., Tan, G., Li, K. (2024). Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. International Journal of Biological Macromolecules, 279, 135192. https://doi.org/10.1016/j.ijbiomac.2024.135192
  10. Khanzada, B., Akhtar, N., ul haq, I., Mirza, B., Ullah, A. (2024). Polyphenol assisted nano-reinforced chitosan films with antioxidant and antimicrobial properties. Food Hydrocolloids, 153, 110010. https://doi.org/10.1016/j.foodhyd.2024.110010
  11. Dubinina, A., Letuta, T., Novikova, V. (2020). Research of the bactericidal properties and toxicity of compositions for stone fruit preservation. Food Science and Technology, 14 (2). https://doi.org/10.15673/fst.v14i2.1721
  12. Dubinina, A., Letuta, T., Frolova, T., Seliutina, H., Hapontseva, O. (2019). Perspectives of the use of plant raw material extracts for storage of tomatoes. Food Science and Technology, 12 (4). https://doi.org/10.15673/fst.v12i4.1181
  13. Dubinina, A., Letuta, T., Novikova, V. (2020). Storage of apricots using of medicinal plant extracts. Technical Sciences and Technology, 4 (18), 192–208. https://doi.org/10.25140/2411-5363-2019-4(18)-192-208
  14. Supplement 11.5. European Pharmacopoeia Online. Available at: https://pheur.edqm.eu/subhome/11-5
  15. European Pharmacopoeia 10.0. Strasbourg. Available at: https://www.scribd.com/document/508063535/European-Pharmacopoeia-10-0
  16. Ricarte, R. G., Shanbhag, S. (2024). A tutorial review of linear rheology for polymer chemists: basics and best practices for covalent adaptable networks. Polymer Chemistry, 15 (9), 815–846. https://doi.org/10.1039/d3py01367g
  17. Tanaka, T. (2000). Experimental Methods in Polymer Science. Academic Press. https://doi.org/10.1016/c2009-0-22460-3
  18. Diblan, S., Gökkaya Erdem, B., Kaya, S. (2020). Sorption, diffusivity, permeability and mechanical properties of chitosan, potassium sorbate, or nisin incorporated active polymer films. Journal of Food Science and Technology, 57 (10), 3708–3719. https://doi.org/10.1007/s13197-020-04403-8
  19. Roldán-Ruiz, M. J., Jiménez-Riobóo, R. J., Gutiérrez, M. C., Ferrer, M. L., del Monte, F. (2019). Brillouin and NMR spectroscopic studies of aqueous dilutions of malicine: Determining the dilution range for transition from a “water-in-DES” system to a “DES-in-water” one. Journal of Molecular Liquids, 284, 175–181. https://doi.org/10.1016/j.molliq.2019.03.133
  20. Pavliuk, R. Yu., Poharska, V. V., Yanytskyi, V. V., Pavliuk, V. A., Sokolova, L. M., Korobets, N. V., Maksymova, N. F. (2013). Tovaroznavstvo ta innovatsiyni tekhnolohiyi pererobky likarsko-tekhnichnoi roslynnoi syrovyny. Ch. 1. Seriya: Ozdorovchi naturalni dobavky ta produkty kharchuvannia. Kharkiv: KhDUKhT, KNTEU, 429.
  21. de Sousa, D. P., Damasceno, R. O. S., Amorati, R., Elshabrawy, H. A., de Castro, R. D., Bezerra, D. P. et al. (2023). Essential Oils: Chemistry and Pharmacological Activities. Biomolecules, 13 (7), 1144. https://doi.org/10.3390/biom13071144
  22. Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F. et al. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117 (4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  23. Alves, T. F. P., Teixeira, N., Vieira, J., Vicente, A. A., Mateus, N., de Freitas, V., Souza, H. K. S. (2022). Sustainable chitosan packaging films: Green tea polyphenolic extraction strategies using deep eutectic solvents. Journal of Cleaner Production, 372, 133589. https://doi.org/10.1016/j.jclepro.2022.133589
  24. Xuan Cuong, D., Xuan Hoan, N., Huu Dong, D., Thi Minh Thuy, L., Van Thanh, N., Thai Ha, H. et al. (2020). Tannins: Extraction from Plants. Tannins - Structural Properties, Biological Properties and Current Knowledge. https://doi.org/10.5772/intechopen.86040
  25. Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., Simal-Gandara, J. (2020). Technological Application of Tannin-Based Extracts. Molecules, 25 (3), 614. https://doi.org/10.3390/molecules25030614
  26. Bonilla, J., Poloni, T., Lourenço, R. V., Sobral, P. J. A. (2018). Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Bioscience, 23, 107–114. https://doi.org/10.1016/j.fbio.2018.03.007
  27. Mohammed, K., Yu, D., Mahdi, A. A., Zhang, L., Obadi, M., Al-Ansi, W., Xia, W. (2024). Influence of cellulose viscosity on the physical, mechanical, and barrier properties of the chitosan-based films. International Journal of Biological Macromolecules, 259, 129383. https://doi.org/10.1016/j.ijbiomac.2024.129383
  28. Smoilovska, H. P., Maliuhina, O. O. (2022). Doslidzhennia vmistu dubylnykh rechovyn u travi dereviyu zvychainoho. Suchasni dosiahnennia farmatsevtychnoi spravy, 1, 221–222. Available at: http://dspace.zsmu.edu.ua/handle/123456789/19351
  29. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., Testin, R. F. (2000). Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. Journal of Food Science, 65 (7), 1175–1179. https://doi.org/10.1111/j.1365-2621.2000.tb10261.x
  30. Senra, T. D. A., Campana-Filho, S. P., Desbrières, J. (2018). Surfactant-polysaccharide complexes based on quaternized chitosan. Characterization and application to emulsion stability. European Polymer Journal, 104, 128–135. https://doi.org/10.1016/j.eurpolymj.2018.05.002
Design of a new film with predefined properties based on chitosan

Downloads

Published

2024-10-30

How to Cite

Dubinina, A., Zaytseva, V., Lehnert, S., Vindyk, A., Cherevko, O., Tatar, L., Skyrda, O., & Prasol, S. (2024). Design of a new film with predefined properties based on chitosan. Eastern-European Journal of Enterprise Technologies, 5(6 (131), 34–44. https://doi.org/10.15587/1729-4061.2024.313889

Issue

Section

Technology organic and inorganic substances