Determining the vertical load on a container with a floor made of sandwich panels transported by a flat wagon
DOI:
https://doi.org/10.15587/1729-4061.2024.315059Keywords:
transport container, container improvement, container load, container strength, container transportationAbstract
loads in the structure of a container with a floor made of sandwich panels under operational modes.
To ensure the strength of the container, as well as the safety of the cargo transported in it, it is proposed to design a floor based on sandwich panels. It is assumed that each of these panels is made of two metal sheets in a layer between which an energy-absorbing material is placed. Given the presence of energy-absorbing material in the structure of the sandwich panel, the vertical dynamic loads acting on the cargo container during its transportation will be reduced.
To substantiate the proposed solution, mathematical modeling of the vertical load on the container during its transportation by a flat wagon was carried out. It is found that the accelerations acting on the container of the improved design are 5.7 % lower than those acting on the container of standard design.
The calculation of the strength of the container was carried out under operational schemes of its loads. It has been established that the strength of the container is ensured.
A special feature of the results is that the reduction of the load on the container is achieved not by strengthening its structure but by introducing flexible connections into it.
The field of practical application of the results is railroad transport. The conditions for the practical use of the findings are the use of energy-absorbing material in the structure of sandwich panels that form the floor of the container.
The results of the research will contribute to improving the strength of containers under operating conditions, the safety of the cargo transported in them, as well as increasing the efficiency of the functioning of container transportation
References
- Russo, F., Comi, A., Chilà, G. (2024). Dynamic Approach to Update Utility and Choice by Emerging Technologies to Reduce Risk in Urban Road Transportation Systems. Future Transportation, 4 (3), 1078–1099. https://doi.org/10.3390/futuretransp4030052
- Čižiūnienė, K., Matijošius, J., Sokolovskij, E., Balevičiūtė, J. (2024). Assessment of Implementing Green Logistics Principles in Railway Transport: The Case of Lithuania. Sustainability, 16 (7), 2716. https://doi.org/10.3390/su16072716
- Dižo, J., Blatnický, M. (2019). Investigation of ride properties of a three-wheeled electric vehicle in terms of driving safety. Transportation Research Procedia, 40, 663–670. https://doi.org/10.1016/j.trpro.2019.07.094
- Steišūnas, S., Dižo, J., Bureika, G., Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370
- Vatulia, G., Lovska, A., Myamlin, S., Stanovska, I., Holofieieva, M., Horobets, V. et al. (2023). Revealing the effect of structural components made of sandwich panels on loading the container transported by railroad. Eastern-European Journal of Enterprise Technologies, 1 (7 (121)), 48–56. https://doi.org/10.15587/1729-4061.2023.272316
- Vatulia, G. L., Lovska, A. O., Krasnokutskyi, Y. S. (2023). Research into the transverse loading of the container with sandwich-panel walls when transported by rail. IOP Conference Series: Earth and Environmental Science, 1254 (1), 012140. https://doi.org/10.1088/1755-1315/1254/1/012140
- Zha, X., Zuo, Y. (2016). Theoretical and experimental studies on in-plane stiffness of integrated container structure. Advances in Mechanical Engineering, 8 (3). https://doi.org/10.1177/1687814016637522
- Oterkus, S., Wang, B., Oterkus, E., Galadima, Y. K., Cocard, M., Stefanos, S. et al. (2022). Structural Integrity Analysis of Containers Lost at Sea Using Finite Element Method. Sustainable Marine Structures, 4 (2), 11–17. https://doi.org/10.36956/sms.v4i2.505
- Yildiz, T. (2019). Design and Analysis of a Lightweight Composite Shipping Container Made of Carbon Fiber Laminates. Logistics, 3 (3), 18. https://doi.org/10.3390/logistics3030018
- Fariña, E. A., Panait, M., Lago-Cabo, J. M., Fernández-González, R. (2024). Energy Analysis of Standardized Shipping Containers for Housing. Inventions, 9 (5), 106. https://doi.org/10.3390/inventions9050106
- Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Rybin, A., Kravchenko, O. (2023). Strength Assessment of an Improved Design of a Tank Container under Operating Conditions. Communications - Scientific Letters of the University of Zilina, 25 (3), B186–B193. https://doi.org/10.26552/com.c.2023.047
- Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. https://doi.org/10.3390/app13010079
- Antala, D. K., Satasiya, R. M., Chauhan, P. M. (2020). Design, development and performance evaluation of transportation container for sapota fruit. Journal of Food Science and Technology, 58 (10), 4024–4033. https://doi.org/10.1007/s13197-020-04865-w
- Rzeczycki, A., Wiśnicki, B. (2016). Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load. Solid State Phenomena, 252, 81–90. https://doi.org/10.4028/www.scientific.net/ssp.252.81
- Kondratiev, A., Potapov, O., Tsaritsynskyi, A., Nabokina, T. (2021). Optimal Design of Composite Shelled Sandwich Structures with a Honeycomb Filler. Lecture Notes in Mechanical Engineering, 546–555. https://doi.org/10.1007/978-3-030-77719-7_54
- Kondratiev, A. V., Kovalenko, V. O. (2019). Optimization of design parameters of the main composite fairing of the launch vehicle under simultaneous force and thermal loading. Space Science and Technology, 25 (4), 3–21. https://doi.org/10.15407/knit2019.04.003
- Lee, H.-A., Jung, S.-B., Jang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (4), 1283–1296. https://doi.org/10.1177/0954409715593971
- Lee, W. G., Kim, J.-S., Sun, S.-J., Lim, J.-Y. (2016). The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (1), 25–42. https://doi.org/10.1177/0954409716646140
- Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. https://doi.org/10.15587/1729-4061.2022.266855
- Koziar, M. M., Feshchuk, Yu. V., Parfeniuk, O. V. (2018). Kompiuterna hrafika: SolidWorks. Kherson: Oldi-plius, 252. Available at: https://ep3.nuwm.edu.ua/22175/1/Комп%27ютерна%20графіка.pdf
- Pustiulha, S. I., Samostian, V. R., Klak, Yu. V. (2018). Inzhenerna hrafika v SolidWorks. Lutsk: Vezha, 172. Available at: https://lib.lntu.edu.ua/sites/default/files/2021-02/Інженерна%20графіка%20в%20SolidWorks.pdf
- Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Ravlyuk, V., Harusinec, J. (2023). Studying the load of composite brake pads under high-temperature impact from the rolling surface of wheels. EUREKA: Physics and Engineering, 4, 155–167. https://doi.org/10.21303/2461-4262.2023.002994
- Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky vahoniv. Kyiv: KUETT, 269.
- Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
- Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108.
- Dižo, J., Blatnický, M., Harušinec, J., Suchánek, A. (2022). Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model. Symmetry, 14 (3), 536. https://doi.org/10.3390/sym14030536
- Manuel, C. J. T., Santos, M. M. D., Tusset, A. M. (2021). Mathematical modeling attributed to kinematics and dynamics of a vehicle with 4-wheels. The European Physical Journal Special Topics, 230 (18-20), 3663–3672. https://doi.org/10.1140/epjs/s11734-021-00238-2
- Djabbarov, S. B., Saidivaliev, S. U., Abdullayev, B. A., Abdullaev, R. Y., Tursunkhodjaeva, R. Y. (2022). Mathematical model of the dynamics of a freight car on the descent part of the marshaling yard. Neuroquantology, 20 (12), 3025–3036. Available at: https://www.neuroquantology.com/open-access/Mathematical+model+of+the+dynamics+of+a+freight+car+on+the++descent+part+of+the+marshaling+yard_10559/?download=true
- Dizo, J., Blatnicky, M. (2019). Evaluation of Vibrational Properties of a Three-wheeled Vehicle in Terms of Comfort. Manufacturing Technology, 19 (2), 197–203. https://doi.org/10.21062/ujep/269.2019/a/1213-2489/mt/19/2/197
- Gerlici, J., Lovska, A., Vatulia, G., Pavliuchenkov, M., Kravchenko, O., Solčanský, S. (2023). Situational Adaptation of the Open Wagon Body to Container Transportation. Applied Sciences, 13 (15), 8605. https://doi.org/10.3390/app13158605
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alyona Lovska, Iraida Stanovska, Valeriia Kyryllova, Andrii Okorokov, Roman Vernigora
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.