Researching of modulation of radiation intensity in multimode polymer fiber under selective excitation of modes

Authors

  • Василь Ігорович Варищук Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013, Ukraine
  • Василь Ярославович Татарин Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013, Ukraine
  • Ярослав Васильович Бобицький Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.31520

Keywords:

polymer optical fiber, guided mode, mode coupling, phase shift, interference, intensity distribution of radiation, speckle pattern References

Abstract

When coherent light is propagated into the multimode fiber, a speckle pattern is formed at the exit face of fiber.When the fiber is vibrated, the speckle pattern is modulated due to mode coupling and phase modulation of the propagating modes.In this paper the effect of fiber bends on theintensity modulation of the off-axis modes in multimode polymer fiber has been investigated.

The theoretical analysis of a bend multimode fiber shows that the change of the speckle pattern intensity depends on the length of the fiber perturbed and amplitude of the vibration signal. When a highly coherent light source is used, the speckle pattern modulation is due primarily to phase modulation of the modes, and the component of the induced frequency overcomes the first and second harmonics with a difference of 13 dB and 18 dB, respectively, which allows clear identification of the induced vibration frequency. In contrast, when less coherent sources are used, the difference between fundamental vibration frequency and its harmonic components are small. Experimentally shown that when the off-axis modes are excited in multimode polymer fiber the amplitude of the output signal depends linearly on the amplitude of the vibration signal. The considered modulation mechanism can be effectively used to detection of the vibration and mechanical oscillation.

Author Biographies

Василь Ігорович Варищук, Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013

graduate student

The department of photonics

Василь Ярославович Татарин, Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013

Associate professor, Candidate of technical science

The department of photonics

Ярослав Васильович Бобицький, Lviv Polytechnic National University 12 Bandera street, Lviv, Ukraine, 79013

Professor, Doctor of technical sciences, head of the department

The department of photonics

References

  1. Goodman, J. W. (2007). Speckle Phenomena in Optics: Theory and Applications. Roberts&Co, 395.
  2. Busurin, V. I., Nosov, Yu. R. (1990). Volokonno-opticheskie datchiki: fizicheskie osnovyi, voprosyi rascheta i primeneniya. Moscow: Energoatomizd, 256.
  3. Liokumovich, L. B. (2007). Volokonno-opticheskie interferometricheskie izmereniya. Part 1. Volokonno-opticheskie interferometryi. SPb.: Izd-vo Politehn. un-ta, 110.
  4. Gupta, B., Bhargaw, H. N., Sardana, H. K. (2008). Qualifying fibre optic temperature sensor using speckle metrology. International Journal of Information Technology & Knowledge Management, 1, 337–350.
  5. Chang, X., Li, M., Han, X. (2009). Recent development and applications of polymer optical fiber sensors for strain measurement. Frontiers of Optoelectronics in China, 2, 362–367. doi: 10.1007/s12200-009-0057-1
  6. Varyshchuk, V., Bobitski, Y., Poisel, H. (2014). Using a multimode polymer optical fiber as a high sensitivy strain sensor. In Proc. of the 21st International Conference Mixed Design of Integrated Circuits & Systems, Lublin, Poland. doi: 10.1109/mixdes.2014.6872242
  7. Lujo, I., Klokoc, P., Komljenovic, T., Sipus, Z. (2008). Fiber-Optic Vibration Sensor Based on Multimode Fiber. Radioengineering, 17, 93–97.
  8. Rodriguez-Cobo, L., Lomer, M., Galindez, C., Lopez-Higuera, J. M. (2012). POF vibration sensor based on speckle pattern changes In Proc. of 22nd International Conference on Optical Fiber Sensors, Beijing, China. doi: 10.1117/12.970625
  9. Kingsley, S. A., Davies, D. E. N. (1978). Multimode optical fiber phase modulation and discrimination. Electron. Lett., 14, 322–325. doi: 10.1049/el:19780220
  10. Kajenski, P. J., Fuhr, P. L., Huston, D. R., (1992). Mode coupling and phase modulation in vibrating waveguides. Journal of Lightwave Technology, 10, 1297–1301. doi: 10.1109/50.156882
  11. El-Sherif, M. A., Hu, S., Radhakrishnan, J., Ko, F. K., Roth, D. J., Lerch, B. (1993). Optical response of sapphire multimode optical sensor for ceramic composite applications. In Proc. SPIE, 2072, Fiber Optic Physical Sensors in Manufacturing and Transportation, Boston, Massachusetts, United States.
  12. Radhakrishnan, J., El-Sherif, M. A. (1996). Analysis on spatial intensity modulation for fiber-optic sensor applications. Optical Fiber Technology, 2, 114–126. doi: 10.1006/ofte.1996.0013
  13. Kotov, O. I., Liokumovich, L. B., Markov, S. I. (2004). Registration of influence on optical fiber by mode-mode interference. In Proc. of SPIE 5381, Lasers for Measurements and Information Transfer, Bellingham, Washington, United States.
  14. Kosareva, L. I., Kotov, O. I., Liokumovich, L. B., Markov, S. I., (2000). Two mechanisms of phase modulation in multimode fiber-optic interferometers. Technical Physics Letters, 26, 70–74. doi: 10.1134/1.1262745

Published

2014-12-23

How to Cite

Варищук, В. І., Татарин, В. Я., & Бобицький, Я. В. (2014). Researching of modulation of radiation intensity in multimode polymer fiber under selective excitation of modes. Eastern-European Journal of Enterprise Technologies, 6(9(72), 17–22. https://doi.org/10.15587/1729-4061.2014.31520

Issue

Section

Information and controlling system