Evaluating the impact of graalvm and JVM on mobile banking microservices performance

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.315493

Keywords:

GraalVM, Java Spring Boot, Java Virtual Machine, application performance, resource optimization

Abstract

This study investigates the implementation of Graal Virtual Machine (GraalVM) in Java Spring Boot microservices for mobile banking applications. Increasing digital banking demand and user growth necessitate systems that can handle high transaction volumes efficiently. Java Virtual Machine (JVM) environments face challenges, including slower application startup times, higher CPU usage, and increased memory consumption, limiting their suitability for such high-demand scenarios. To address these issues, this research uses a quasi-experimental design to compare microservices' performance on GraalVM and JVM by analyzing key metrics: application startup time, CPU usage, and memory consumption under various load scenarios. Results show that GraalVM significantly improves startup times, reducing delays by 25–30 seconds across services, thus enhancing responsiveness. CPU usage showed varied outcomes: mobile-service demonstrated reductions (e.g., 0.8678 to 0.7798 for 100 users), whereas profile-service and casa-service recorded slight increases under certain workloads (e.g., 0.7829 to 0.8569 for profile-service at 100 users). Memory consumption increased notably for GraalVM, particularly in high-load scenarios such as casa-service at 600 users (198.47 MB to 591.38 MB). These findings highlight the trade-offs of adopting GraalVM, with faster startup times offset by higher memory usage in specific services. The results underscore the importance of workload-specific evaluations when optimizing microservices. Practical applications of this research include guiding system architects in selecting appropriate runtime environments to enhance the performance and scalability of mobile banking systems, ensuring efficient operation under varying demands

Author Biographies

Edwin Yosef Setiawan Sihombing, BINUS University

Master of Computer Science

Department of Information System Management

Muhammad Zarlis, BINUS University

Professor of Computer Science

Department of Information System Management

References

  1. Grigorescu, A., Oprisan, O., Lincaru, C., Pirciog, C. S. (2023). E-Banking Convergence and the Adopter’s Behavior Changing Across EU Countries. Sage Open, 13 (4). https://doi.org/10.1177/21582440231220455
  2. Ionașcu, A. E., Gheorghiu, G., Spătariu, E. C., Munteanu, I., Grigorescu, A., Dănilă, A. (2023). Unraveling Digital Transformation in Banking: Evidence from Romania. Systems, 11 (11), 534. https://doi.org/10.3390/systems11110534
  3. Kim, L., Jindabot, T. (2022). Evolution of customer satisfaction in the e-banking service industry. Innovative Marketing, 18 (1), 131–141. https://doi.org/10.21511/im.18(1).2022.11
  4. Aydemir, F., Başçiftçi, F. (2022). Building a Performance Efficient Core Banking System Based on the Microservices Architecture. Journal of Grid Computing, 20 (4). https://doi.org/10.1007/s10723-022-09624-z
  5. Yin, P., Cheng, J. (2023). A MySQL-Based Software System of Urban Land Planning Database of Shanghai in China. Computer Modeling in Engineering & Sciences, 135 (3), 2387–2405. https://doi.org/10.32604/cmes.2023.023666
  6. Larsson, R. (2020). Evaluation of GraalVM Performance for Java Programs. Available at: http://www.diva-portal.org/smash/get/diva2:1457592/FULLTEXT01.pdf
  7. Fong, F., Raed, M. (2021). Performance comparison of GraalVM, Oracle JDK and OpenJDK for optimization of test suite execution time. Available at: https://www.diva-portal.org/smash/get/diva2:1597213/FULLTEXT01.pdf
  8. Kozak, D., Jovanovic, V., Stancu, C., Vojnar, T., Wimmer, C. (2023). Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image. Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes, 129–142. https://doi.org/10.1145/3617651.3622980
  9. Wyciślik, Ł., Latusik, Ł., Kamińska, A. M. (2023). A Comparative Assessment of JVM Frameworks to Develop Microservices. Applied Sciences, 13 (3), 1343. https://doi.org/10.3390/app13031343
  10. Sipek, M., Mihaljevic, B., Radovan, A. (2019). Exploring Aspects of Polyglot High-Performance Virtual Machine GraalVM. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 1671–1676. https://doi.org/10.23919/mipro.2019.8756917
  11. Kreindl, J., Rigger, M., Mössenböck, H. (2018). Debugging native extensions of dynamic languages. Proceedings of the 15th International Conference on Managed Languages & Runtimes - ManLang ’18, 1–7. https://doi.org/10.1145/3237009.3237017
  12. Li, S., Jia, Z., Li, Y., Liao, X., Xu, E., Liu, X. et al. (2019). Detecting Performance Bottlenecks Guided by Resource Usage. IEEE Access, 7, 117839–117849. https://doi.org/10.1109/access.2019.2936599
  13. Sampaio, A. R., Rubin, J., Beschastnikh, I., Rosa, N. S. (2019). Improving microservice-based applications with runtime placement adaptation. Journal of Internet Services and Applications, 10 (1). https://doi.org/10.1186/s13174-019-0104-0
  14. Cosmina, I. (2021). Java 17 for Absolute Beginners. Apress, 801. https://doi.org/10.1007/978-1-4842-7080-6
  15. Indrianto, I. (2023). Performance testing on web information system using apache jmeter and blazemeter. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 7 (2), 138–149. https://doi.org/10.22437/jiituj.v7i2.28440
  16. Gravetter, F. J., Wallnau, L. B. (2017). Statistics for the Behavioral Sciences. Cengage Learning. Available at: http://ndl.ethernet.edu.et/bitstream/123456789/29095/1/Frederick%20J%20Gravetter_2017.pdf
  17. Deshpande, J. V., Naik-Nimbalkar, U., Dewan, I. (2018). Nonparametric Statistics Theory and Methods. World Scientific. Available at: https://sadbhavnapublications.org/research-enrichment-material/2-Statistical-Books/Nonparametric-Statistics-Theory-and-Methods.pdf
  18. Corder, G. W., Foreman, D. I. (2014). Nonparametric Statistics. A Step by Step Approach. Wiley. Available at: https://faculty.ksu.edu.sa/sites/default/files/nonparametric_statistics_a_step-by-step_approach.pdf
Evaluating the impact of graalvm and JVM on mobile banking microservices performance

Downloads

Published

2025-02-28

How to Cite

Sihombing, E. Y. S., & Zarlis, M. (2025). Evaluating the impact of graalvm and JVM on mobile banking microservices performance. Eastern-European Journal of Enterprise Technologies, 1(13 (133), 46–58. https://doi.org/10.15587/1729-4061.2025.315493

Issue

Section

Transfer of technologies: industry, energy, nanotechnology