Identifying risks for effective maintenance of renewable energy plants in the new green Capital City of Indonesia

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.316522

Keywords:

solar power plant (PLTS), ailure mode and effects analysis (FMEA), asset management, risk analysis

Abstract

This study explores the use of Failure Mode and Effects Analysis (FMEA) to identify and mitigate risks in Solar Power Plants (PLTS) in Indonesia’s new National Capital City (IKN). As renewable energy is vital to Indonesia’s sustainability goals, managing risks in PLTS is essential for ensuring reliable and efficient energy production.

The research identifies key challenges such as PV Array module failures, shading effects, and control system disruptions, which significantly impact electricity generation. Using the Risk Priority Number (RPN) methodology, the study ranks PV Array modules as the highest risk component (RPN 192), followed by Control and Management Systems (RPN 140) and PV Circuit Breakers and Video Monitoring Systems (RPN 120). These findings underline the need for targeted mitigation strategies.

Recommendations include regular PV module inspections, hotspot monitoring technology, firmware updates, and enhanced fire protection systems. Preventive measures like grounding current maintenance and fire sensor upgrades further minimize operational disruptions, ensuring component durability and system efficiency.

By leveraging the FMEA framework, this study systematically identifies and prioritizes risks while providing actionable solutions to enhance operational resilience. The results align with Indonesia’s vision of achieving 80 % renewable energy utilization in IKN by 2045.

This research offers broader applicability for renewable energy systems in similar contexts, contributing to clean energy initiatives, reducing fossil fuel dependency, and supporting sustainable urban planning. It serves as a critical resource for integrating renewable energy into Indonesia’s green and resilient capital city vision

Author Biographies

Faishal Arifin, Universitas Indonesia

Bachelor of Science in Mechanical Engineering (S.T)

Department of Mechanical Engineering

Yudan Whulanza, Universitas Indonesia

Professor

Department of Mechanical Engineering

References

  1. Pimpalkar, R., Sahu, A., Patil, R. B., Roy, A. (2023). A comprehensive review on failure modes and effect analysis of solar photovoltaic system. Materials Today: Proceedings, 77, 687–691. https://doi.org/10.1016/j.matpr.2022.11.353
  2. Aboagye, B., Gyamfi, S., Ofosu, E. A., Djordjevic, S. (2023). Characterisation of visual defects on installed solar photovoltaic (PV) modules in different climatic zones in Ghana. Scientific African, 20, e01682. https://doi.org/10.1016/j.sciaf.2023.e01682
  3. Salah, B., Alnahhal, M., Ali, M. (2023). Risk prioritization using a modified FMEA analysis in industry 4.0. Journal of Engineering Research, 11 (4), 460–468. https://doi.org/10.1016/j.jer.2023.07.001
  4. Ogbonnaya, C., Abeykoon, C., Nasser, A., Ume, C. S., Damo, U. M., Turan, A. (2021). Engineering risk assessment of photovoltaic-thermal-fuel cell system using classical failure modes, effects and criticality analyses. Cleaner Environmental Systems, 2, 100021. https://doi.org/10.1016/j.cesys.2021.100021
  5. Rajput, P., Malvoni, M., Kumar, N. M., Sastry, O. S., Tiwari, G. N. (2019). Risk priority number for understanding the severity of photovoltaic failure modes and their impacts on performance degradation. Case Studies in Thermal Engineering, 16, 100563. https://doi.org/10.1016/j.csite.2019.100563
  6. Yao, H., Zhou, Q. (2023). Research status and application of rooftop photovoltaic Generation Systems. Cleaner Energy Systems, 5, 100065. https://doi.org/10.1016/j.cles.2023.100065
  7. Jevon, I., Rahardjo, J. (2021). Penerapan Manajemen Risiko menggunakan Metode FMEA pada Proyek Penggalian Sumur Bor oleh CV. Tirto Kencana. Jurnal Titra, 9 (2), 471–478.
  8. Haievskyi, O., Kvasnytskyi, V., Haievskyi, V. (2020). Development of a method for optimizing a product quality inspection plan by the risk of non-conformity slippage. Eastern-European Journal of Enterprise Technologies, 6 (3 (108)), 50–59. https://doi.org/10.15587/1729-4061.2020.209325
  9. Adi, A. C. (2024). Transformasi Kota Hijau, 50 MW PLT Surya Terangi IKN. Kementerian Energi dan Sumber Daya Minera. Available at: https://www.esdm.go.id/id/media-center/arsip-berita/transformasi-kota-hijau-50-mw-plt-surya-terangi-ikn
  10. Melihat dari Dekat Bagaimana Capaian Terkini Energi Hijau PLTS di IKN (2024). Available at: https://www.netralnews.com/melihat-dari-dekat-bagaimana-capaian-terkini-energi-hijau-plts-di-ikn/NXJ1cUMwTytJaHdld3ppV2NjcHF1dz09
  11. VGB-Standard. RDS-PP®. Application Guideline Part 33: Photovoltaic Power PlantsAnwendungsrichtlinie Teil 33: Photovoltaische Kraftwerke. VGB-S-823-33-2018-07-EN-DE. Available at: https://pdfcoffee.com/vgb-s-823-33-2018-07-en-de-rds-pp-application-guideline-part-33-photovoltaic-power-plants-anwendungsrichtlinie-teil-41-photovoltaische-kraftwerke-pdf-free.html
  12. Abdelkader, M. R., Al-Salaymeh, A., Al-Hamamre, Z., Sharaf, F. (2010). A comparative Analysis of the Performance of Monocrystalline and Multiycrystalline PV Cells in Semi Arid Climate Conditions: the Case of Jordan. Jordan Journal of Mechanical and Industrial Engineering, 4 (5), 543–552. Available at: https://www.researchgate.net/publication/228757401
  13. Muhammad, U. (2023). Identifikasi Permasalahan Pengoperasian PLTS Offgrid. Joule (Journal of Electrical Engineering), 4 (1), 33–42. https://doi.org/10.61141/joule.v4i1.440
  14. Corio, D., Tambunan, I. H., Aminur, Yuliansyah, H., Pratama, R. W., Rauf, R. et al. (2023). Optimalisasi Pembangkit Listrik Tenaga Surya di Daerah Kepulauan. Penerbit Yayasan Kita Menulis. Available at: https://repo.unespadang.ac.id/id/eprint/416/1/FullBook%20Optimalisasi%20Pembangkit%20Listrik%20Tenaga%20Surya%20di%20Daerah%20Kepulauan_compressed.pdf
  15. Saraswati, D., Marie, I. A., Witonohadi, A. (2014). Power Transformer Failures Evaluation Using Failure Mode Effect and Criticality Analysis (FMECA) Method. Asian Journal of Engineering and Technology, 2 (6), 484–489. Available: www.ajouronline.com
  16. Alzyoud, A. R., Dalabeeh, A. S., Al-Rawashdeh, A. Y., Al-Mofleh, A., Allabadi, A., Almomani, T., Hindi, A. (2021). The impact of integration of solar farms on the power losses, voltage profile and short circuit level in the distribution system. Bulletin of Electrical Engineering and Informatics, 10 (3), 1129–1141. https://doi.org/10.11591/eei.v10i3.1909
  17. Prameswara, H. T., Rahardjo, A., Larasati, N., Husnayain, F. (2020). Impact of 5 MWp Solar Power Plant Interconnection on Power Flow and Short Circuit Interruption in the 20 kV Medium Voltage Network at Area X Power System. Jetri : Jurnal Ilmiah Teknik Elektro, 18 (1), 31–46. https://doi.org/10.25105/jetri.v18i1.7373
  18. Fiorentini, L., Marmo, L., Danzi, E., Puccia, V. (2016). Fire risk assessment of photovoltaic plants. A case study moving from two large fires: from Accident Investigation and Forensic Engineering to Fire Risk Assessment for Reconstruction and Permitting Purposes. Chemical Engineering Transactions, 48, 427–432. Available at: https://www.aidic.it/cet/16/48/072.pdf
  19. Datsios, Z. G., Mikropoulos, P. N. (2012). Safe grounding system design for a photovoltaic power station. 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), 62–62. https://doi.org/10.1049/cp.2012.2041
  20. Madeti, S. R., Singh, S. N. (2017). Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 67, 1180–1207. https://doi.org/10.1016/j.rser.2016.09.088
  21. Osmani, K., Haddad, A., Lemenand, T., Castanier, B., Ramadan, M. (2020). A review on maintenance strategies for PV systems. Science of The Total Environment, 746, 141753. https://doi.org/10.1016/j.scitotenv.2020.141753
  22. Al-Saffar, M., Musilek, P. (2020). Reinforcement Learning-Based Distributed BESS Management for Mitigating Overvoltage Issues in Systems With High PV Penetration. IEEE Transactions on Smart Grid, 11 (4), 2980–2994. https://doi.org/10.1109/tsg.2020.2972208
  23. Hassaine, L., OLias, E., Quintero, J., Salas, V. (2014). Overview of power inverter topologies and control structures for grid connected photovoltaic systems. Renewable and Sustainable Energy Reviews, 30, 796–807. https://doi.org/10.1016/j.rser.2013.11.005
  24. Wu, Z., Hu, Y., Wen, J. X., Zhou, F., Ye, X. (2020). A Review for Solar Panel Fire Accident Prevention in Large-Scale PV Applications. IEEE Access, 8, 132466–132480. https://doi.org/10.1109/access.2020.3010212
  25. Young-Chan, O. et al. (2018). Study on Fire Breakout Prevention of Solar Power System. International Journal of Energy, Environment and Economics, 26 (1).
  26. Moravej, Z., Bagheri, S. (2015). Condition Monitoring Techniques of Power Transformers: A Review. Journal of Operation and Automation in Power Engineering, 3 (1), 71–82. Available at: https://journal.uma.ac.ir/article_296_b806f25e611b4700b7ad55a7d4a665f9.pdf
Identifying risks for effective maintenance of renewable energy plants in the new green Capital City of Indonesia

Downloads

Published

2024-12-30

How to Cite

Arifin, F., & Whulanza, Y. (2024). Identifying risks for effective maintenance of renewable energy plants in the new green Capital City of Indonesia. Eastern-European Journal of Enterprise Technologies, 6(8 (132), 34–43. https://doi.org/10.15587/1729-4061.2024.316522

Issue

Section

Energy-saving technologies and equipment