Development of an approach to the construction of an adapted model for ensuring the thermal readiness processes of a vehicle based on fuel consumption and exhaust gas emissions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.316922

Keywords:

vehicle, thermal readiness, monitoring, enlarged algorithm, adapted mode, fuel, emissions

Abstract

The research object is the processes of changes in fuel consumption and harmful emissions of engines and vehicles during their operation.

The investigated problem consists in the lack of an approach to the construction of an adapted model for analytical studies of the thermal readiness processes of vehicles with petrol-powered engines.

An approach to ensuring vehicle thermal preparation based on fuel consumption and exhaust gas emissions is proposed. The essence of the improved algorithm and model lies in accounting for the specifics of warm-up processes based on the developed thermal preparation cycle for vehicle engines.

A feature of the improved approach is the incorporation of experimental research results and features of thermal preparation processes.

The field of practical application of the improved approach is the thermal readiness processes of vehicles with engines adapted to work on gasoline and LPG, focusing on fuel consumption and exhaust gas emissions.

Improvements have been made to the enlarged algorithm of the mathematical model for ensuring vehicle thermal preparation processes. This includes considering fuel supply and thermal readiness features, as well determining fuel consumption and emissions.

The peculiarity of the proposed model is that it allows systematic simulation of thermal preparation processes, taking into account factors and processes that cannot be investigated experimentally. This is validated by the model’s adequacy test, showing that data deviation is within the statistical error range from 4.4 to 5.2 %.

The application of the developed approach ensures comprehensive consideration of the specifics of thermal preparation processes and supports decision-making for evaluating results according to the relevant criteria

Author Biographies

Igor Gritsuk, Kherson State Maritime Academy

Doctor of Technical Sciences, Professor

Department of Ship Technical Systems and Complexes

Dmytro Pohorletskyi, Kherson State Maritime Academy

PhD, Associate Professor

Department of Ship Technical Systems and Complexes

Mykola Bulgakov, Odesa National Maritime University

PhD, Associate Professor

Department of Navigation and Maritime Safety

Igor Khudiakov, Kherson State Maritime Academy

PhD, Associate Professor

Department of Ship Technical Systems and Complexes

Mykyta Volodarets, Pryazovskyi State Technical University

PhD, Associate Professor

Department of Road Transport

Oleh Smyrnov, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Automobile Electronics

Volodymyr Korohodskyi, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Internal Combustion Engines

Roman Symonenko, State Enterprise "State Road Transport Research Institute"

Doctor of Technical Sciences

Center for Scientific Research of Complex Transport Problems

Oleksii Holovashchenko, National Transport University

PhD Student

Department of Ecology and Safety of Vital Functions

Valerii Hrytsuk, Kharkiv National Automobile and Highway University

PhD Student

Department of Computer Science and Information Systems

References

  1. Hutarevych, Yu. F., Zerkalov, D. V., Hovorun, A. H., Korpach, A. O., Merzhyievska, L. P. (2006). Ekolohiya ta avtomobilnyi transport. Kyiv: Aristei, 292.
  2. Komov, P. B., Volkov, V. V. (2005). Problemy orhanizatsiyi tekhnichnoi ekspluatatsiyi avtomobiliv u suchasnykh umovakh hospodariuvannia. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. Volodymyra Dalia, 6 (88), 128‒132.
  3. Volkov, V. P., Kravchenko, A. P. (2008). Avtomobil': teoriya ekspluatacionnyh svoystv. Lugansk: Noulidzh, 300.
  4. Turenko, A. N., Bogomolov, V. A., Abramchuk, F. I. et al. (2006). O trebovaniyah k konstrukcii i rabochemu processu pnevmodvigatelya dlya kombinirovannoy energoustanovki avtomobilya. Avtomobil'niy transport, 18, 7–12.
  5. Gritsuk, I. V., Mateichyk, V., Aleksandrov, V., Prilepsky, Y., Panchenko, S., Kagramanian, A. et al. (2019). Features of Modeling Thermal Development Processes of the Vehicle Engine Based on Phase-Transitional Thermal Accumulators. SAE Technical Paper Series. https://doi.org/10.4271/2019-01-0906
  6. Trifonov, D. M., Manko, I. V., Syrota, O. V. (2015). Doslidzhennia riznykh metodiv prohrivu dvyhuna z iskrovym zapaliuvanniam, z metoiu optymizatsiyi vytraty palyva. Systemy i środki transportu samochodowego. Seria: Transport. Rzeszów, 201‒208.
  7. Adrov, D. S. (2011). Matematychne modeliuvannia roboty systemy okholodzhennia dvyhuna vnutrishnoho zghorannia utylizatsiynoi ustanovky pry vyznachenni chasu prohrivu. Zbirnyk nauk. prats DonIZT UkrDAZT, 27, 105–112.
  8. Sekret, R., Starzec, P., Kotowicz, J. (2023). Research on water–ice heat accumulator and analysis of its potential use as hybrid source heat pump for building heating. Energy and Buildings, 300, 113670. https://doi.org/10.1016/j.enbuild.2023.113670
  9. Gutarevich, Yu. F., Trifonov, D. M., Syrota, О. V. (2017). Car ZAZ-1102 improvement in fuel efficiency and environmental performance in warm-up phase after engine cold start. Academic Journal Series: Industrial Machine Building, Civil Engineering, 1 (48), 19–25. https://doi.org/10.26906/znp.2017.48.766
  10. Verbovskyi, V. (2019). Otsinka dotsilnosti zastosuvannia systemy teplovoi pidhotovky z vykorystanniam akumulovanoi enerhiyi dlia statsionarnoho hazovoho dvyhuna. Systemy i zasoby transportu. Problemy ekspluatatsiyi i diahnostyky. Kherson: KhDMA, 288–307.
  11. Mytrofanov, O., Proskurin, A., Poznanskyi, A. (2018). Analysis of the piston engine operation on ethanol with the synthesis-gas additives. Eastern-European Journal of Enterprise Technologies, 4 (1 (94)), 14–19. https://doi.org/10.15587/1729-4061.2018.136380
  12. Gritsuk, I. V., Volkov, V., Mateichyk, V., Grytsuk, Y., Nikitchenko, Y., Klets, D. et al. (2018). Information Model of V2I System of the Vehicle Technical Condition Remote Monitoring and Control in Operation Conditions. SAE Technical Paper Series. https://doi.org/10.4271/2018-01-0024
  13. Zaharchuk, V., Gritsuk, I. V., Zaharchuk, O., Golovan, A., Korobka, S., Pylypiuk, L., Rudnichenko, N. (2018). The Choice of a Rational Type of Fuel for Technological Vehicles. SAE Technical Paper Series. https://doi.org/10.4271/2018-01-1759
  14. Eroshchenkov, S. A., Puzyr', V. G., Zhalkin, D. S., Bocharov, V. M. (2008). Vybor racional'noy sistemy progreva teplovoznyh dizeley. Sb. nauch. trudov UkrDAZT, 96, 174–185.
  15. Trifonov, D. M. (2016). Vplyv pidihrivu povitria na vpusku na palyvnu ekonomichnist ta ekolohichni pokaznyky suchasnoho dvyhuna z iskrovym zapaliuvanniam. Visnyk Natsionalnoho transportnoho universytetu. Seriya ”Tekhnichni nauky”, 2 (35), 227‒233.
  16. Morosuk, T., Morosuk, C., Bishliaga, S. (2003). Thermodynamic analysis of traditional and alternative heating systems for Ukraine. In: Advances in Energy Studies. Reconsidering the Importance of Energy, 381‒388.
  17. Gritsuk, I., Pohorletskyi, D., Mateichyk, V., Symonenko, R., Tsiuman, M., Volodarets, M. et al. (2020). Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems). SAE Technical Paper Series. https://doi.org/10.4271/2020-01-2031
  18. Gritsuk, I., Pohorletskyi, D., Pohorletska, N., Volkov, V., Volodarets, M., Khudiakov, I. et al. (2024). Features of Assessing Fuel Efficiency and Environmental Performance of Vehicles in Thermal Preparation Processes. SAE Technical Paper Series, 1. https://doi.org/10.4271/2024-01-5088
  19. Verbovskyi, V. S. (2014). Otsinka dotsilnosti provedennia peredpuskovoi i pisliapuskovoi pidhotovky hazovoho dvyhuna K-159 M2 za dopomohoiu kompleksnoi systemy peredpuskovoho prohrivu. Zbirnyk nauk. prats DonIZT UkrDAZT, 39, 93‒99.
  20. Mateichyk, V., Kostian, N., Smieszek, M., Gritsuk, I., Verbovskyi, V. (2023). Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants. Energies, 16 (17), 6331. https://doi.org/10.3390/en16176331
  21. Aký je rozdiel medzi CNG a LPG. Available at: https://www.cngslovensko.sk/cng-vs-lpg
  22. KAS IR LPG? Available at: https://www.dacia.lv/lv/special-offers/about-LPG.html
  23. Kesariiskyi, O. G., Marchenko, A., Gritsuk, I., Mateichyk, V., Pylyov, V., Kravchenko, S. (2021). Laser Interferometry to Investigate the Strain and Stress State of Details and Units of Heat Engines. SAE International Journal of Engines, 15 (4), 459–469. https://doi.org/10.4271/03-15-04-0023
  24. Castiglione, T., Pizzonia, F., Bova, S. (2016). A Novel Cooling System Control Strategy for Internal Combustion Engines. SAE International Journal of Materials and Manufacturing, 9 (2), 294–302. https://doi.org/10.4271/2016-01-0226
  25. Gritsuk, I., Volkov, V., Mateichyk, V., Gutarevych, Y., Tsiuman, M., Goridko, N. (2017). The Evaluation of Vehicle Fuel Consumption and Harmful Emission Using the Heating System in a Driving Cycle. SAE International Journal of Fuels and Lubricants, 10 (1), 236–248. https://doi.org/10.4271/2017-26-0364
  26. Kahramanian, A. O., Onyshchenko, A. V. (2011). Vykorystannia akumuliatoriv teploty, yak alternatyvnoho dzherela enerhiyi pry prohrivi teplovoziv. Zaliznychnyi transport Ukrainy, 1, 49–51.
  27. Smyrnov, Y., Borysiuk, D., Volobuyeva, T., Nastenko, M., Plakhtii, T. (2023). Model for devising and defining technical development projects of motor transport enterprises. Eastern-European Journal of Enterprise Technologies, 5 (3 (125)), 23–34. https://doi.org/10.15587/1729-4061.2023.289004
  28. Podrigalo, M., Klets, D., Sergiyenko, O., Gritsuk, I. V., Soloviov, O., Tarasov, Y. et al. (2018). Improvement of the Assessment Methods for the Braking Dynamics with ABS Malfunction. SAE Technical Paper Series. https://doi.org/10.4271/2018-01-1881
  29. Mikhalevich, M., Yarita, A., Leontiev, D., Gritsuk, I. V., Bogomolov, V., Klimenko, V., Saravas, V. (2019). Selection of Rational Parameters of Automated System of Robotic Transmission Clutch Control on the Basis of Simulation Modelling. SAE Technical Paper Series. https://doi.org/10.4271/2019-01-0029
  30. Parsadanov, I., Marchenko, A., Tkachuk, M., Kravchenko, S., Polyvianchuk, A., Strokov, A. et al. (2020). Complex Assessment of Fuel Efficiency and Diesel Exhaust Toxicity. SAE Technical Paper Series. https://doi.org/10.4271/2020-01-2182
  31. Kashkanov, V. A., Kashkanov, A. A., Kuzhel, V. P. (2020). Informatsiyni systemy i tekhnolohiyi na avtomobilnomu transporti. Vinnytsia, 104. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Kashkanov_2020_104.pdf
  32. Trifonov, D. M. (2016). Pidvyshchennia efektyvnosti neitralizatsiyi vidpratsovanykh haziv dvyhuna z iskrovym zapaliuvanniam v rezhymi prohrivu. Systemy i środki transportu samochodowego. Seria: Transport. Rzeszów, 195‒202.
  33. Tsiuman, M. P., Golubov, O. S. (2012). Methods of determining the mechanical losses of piston engine. Problems of Friction and Wear, 57, 100‒107. Available at: http://nbuv.gov.ua/UJRN/Ptz_2012_57_10
  34. Hutarevych, Yu. F., Mateichyk, V. P. (1997). Matematychna model rozrakhunku pokaznykiv avtomobilnoho benzynovoho dvyhuna za riznykh sposobiv rehuliuvannia potuzhnosti. Pratsi Zakhidnoho naukovoho tsentru TAU «Proektuvannia, vyrobnytstvo ta ekspluatatsiya avtotransportnykh zasobiv i poizdiv», 4, 22–25.
  35. Mateichyk, V. P., Yanovskyi, V. V., Kozachuk, I. S. (2003). Perevirka adekvatnosti matematychnoi modeli robochoho protsesu hazovoho dvyhuna. Visnyk NTU i TAU, 7, 55–59.
  36. Mateichyk, V. P., Tsiuman, M. P. (2010). Doslidzhennia vplyvu rehuliuvalnykh parametriv na palyvnu ekonomichnist i ekolohichni pokaznyky benzynovoho dvyhuna z systemoiu neitralizatsiyi vidpratsovanykh haziv. Naukovi notatky, 28, 331–335. Available at: http://nbuv.gov.ua/UJRN/Nn_2010_28_66
  37. Paraffin. Available at: https://www.cniga.com.ua/index.files/parafin.htm
  38. Diesel-RK is an engine simulation tool. Diesel-RK. Available at: https://diesel-rk.com/Eng/
  39. Kuleshov, A., Grekhov, L. (2013). Multidimensional Optimization of DI Diesel Engine Process Using Multi-Zone Fuel Spray Combustion Model and Detailed Chemistry NOx Formation Model. SAE Technical Paper Series. https://doi.org/10.4271/2013-01-0882
  40. Gritsuk, I. V., Aleksandrov, V., Panchenko, S., Kagramanian, A., Sobol, O., Sobolev, A., Varbanets, R. (2017). Features of Application Materials While Designing Phase Transition Heat Accumulators of Vehicle Engines. SAE Technical Paper Series. https://doi.org/10.4271/2017-01-5003
  41. Aleksandrov, V. D. (2011). Kinetika zarodysheobrazovaniya i massovoy kristallizacii pereohlazhdennyh zhidkostey i amorfnyh sred. Doneck: Donbass, 580.
  42. Volodarets, M., Gritsuk, I., Chygyryk, N., Belousov, E., Golovan, A., Volska, O. et al. (2019). Optimization of Vehicle Operating Conditions by Using Simulation Modeling Software. SAE Technical Paper Series. https://doi.org/10.4271/2019-01-0099
  43. Hahanov, V., Gharibi, W., Litvinova, E., Chumachenko, S., Ziarmand, A., Englesi, I. et al. (2017). Cloud-Driven Traffic Monitoring and Control Based on Smart Virtual Infrastructure. SAE Technical Paper Series. https://doi.org/10.4271/2017-01-0092
  44. Kukhtyk, N. O. (2018). Determination of fuel consumption and concentration of harmful substances for warming the engine of a car in conditions of low ambient temperatures. The Journal of Zhytomyr State Technological University. Series: Engineering, 2 (82), 88–93. https://doi.org/10.26642/tn-2018-2(82)-88-93
  45. Valero, A. et al. (1999). Structural theory and thermoeconomic diagnosis. Proceedings of Conference ECOS’99. Tokyo, 368‒379.
  46. Ulrich, C., Frieske, B., Schmid, S. A., Friedrich, H. E. (2022). Monitoring and Forecasting of Key Functions and Technologies for Automated Driving. Forecasting, 4 (2), 477–500. https://doi.org/10.3390/forecast4020027
  47. Gorobchenko, O., Fomin, O., Gritsuk, I., Saravas, V., Grytsuk, Y., Bulgakov, M. et al. (2018). Intelligent Locomotive Decision Support System Structure Development and Operation Quality Assessment. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 239–243. https://doi.org/10.1109/ieps.2018.8559487
  48. Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Ocheretna, V. (2023). Comprehensive Study and Evaluation of Ship Energy Efficiency and Environmental Safety Management Measures. Studies in Systems, Decision and Control, 665–679. https://doi.org/10.1007/978-3-031-35088-7_38
  49. Mateichyk, V., Saga, M., Smieszek, M., Tsiuman, M., Goridko, N., Gritsuk, I., Symonenko, R. (2020). Information and analytical system to monitor operating processes and environmental performance of vehicle propulsion systems. IOP Conference Series: Materials Science and Engineering, 776 (1), 012064. https://doi.org/10.1088/1757-899x/776/1/012064
  50. Vychuzhanin, V., Rudnichenko, N., Shybaiev, D., Gritsuk, I., Boyko, V., Shybaieva, N. et al. (2018). Cognitive Model of the Internal Combustion Engine. SAE Technical Paper Series. https://doi.org/10.4271/2018-01-1738
  51. Kuric, I., Gorobchenko, O., Litikova, O., Gritsuk, I., Mateichyk, V., Bulgakov, M., Klackova, I. (2020). Research of vehicle control informative functioning capacity. IOP Conference Series: Materials Science and Engineering, 776 (1), 012036. https://doi.org/10.1088/1757-899x/776/1/012036
  52. Mateichyk, V. P., Navrotskyi, A. V. (2024). Systematization of hardware schemes of vehicle operation monitoring systems. Reporter of the Priazovskyi State Technical University. Section: Technical sciences, 48, 184–192. https://doi.org/10.31498/2225-6733.48.2024.310711
  53. Karshyga, A., Tulegulov, A., Kalkenov, A., Aryngazin, K., Nurtai, Z., Yergaliyev, D. et al. (2023). Development of an intelligent system automating managerial decision-making using big data. Eastern-European Journal of Enterprise Technologies, 6 (3 (126)), 27–35. https://doi.org/10.15587/1729-4061.2023.289395
  54. Lebid, I., Luzhanska, N., Lebid, I., Mazurenko, A., Roi, M., Medvediev, I. et al. (2023). Development of a simulation model of the activities of a transport and forwarding enterprise in the organization of international road cargo transportation. Eastern-European Journal of Enterprise Technologies, 6 (3 (126)), 6–17. https://doi.org/10.15587/1729-4061.2023.291039
  55. Bugayko, D., Ponomarenko, O., Sokolova, N., Leshchinsky, O. (2023). Determining possibilities for applying theoretical principles of situational risk management in the aviation safety system. Eastern-European Journal of Enterprise Technologies, 6 (3 (126)), 55–66. https://doi.org/10.15587/1729-4061.2023.294763
  56. Golovan, A., Gritsuk, I., Popeliuk, V., Sherstyuk, O., Honcharuk, I., Symonenko, R. et al. (2019). Features of Mathematical Modeling in the Problems of Determining the Power of a Turbocharged Engine According to the Characteristics of the Turbocharger. SAE International Journal of Engines, 13 (1). https://doi.org/10.4271/03-13-01-0001
  57. New European Driving Cycle (NEDC). Available at: https://www.transportpolicy.net/standard/eu-light-duty-new-european-driving-cycle/
  58. Emissions of air pollutants from transport in Europe. Available at: https://www.eea.europa.eu/en/analysis/indicators/emissions-of-air-pollutants-from
  59. Volodarets, M., Gritsuk, I., Ukrainskyi, Y., Shein, V., Stepanov, O., Khudiakov, I. et al. (2020). Development of the analytical system for vehicle operating conditions management in the V2I information complex using simulation modeling. Eastern-European Journal of Enterprise Technologies, 5 (3 (107)), 6–16. https://doi.org/10.15587/1729-4061.2020.215006
  60. Roberts, A., Brooks, R., Shipway, P. (2014). Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management, 82, 327–350. https://doi.org/10.1016/j.enconman.2014.03.002
  61. Kovalchuk, V. V., Moisieiev, L. M. (2008). Osnovy naukovykh doslidzhen. Kyiv: Vydavnychyi dim «Profesional», 230.
  62. Hryshchuk, Yu. S. (2008). Osnovy naukovykh doslidzhen. Kharkiv: NTU «KhPI», 232.
Development of an approach to the construction of an adapted model for ensuring the thermal readiness processes of a vehicle based on fuel consumption and exhaust gas emissions

Downloads

Published

2024-12-27

How to Cite

Gritsuk, I., Pohorletskyi, D., Bulgakov, M., Khudiakov, I., Volodarets, M., Smyrnov, O., Korohodskyi, V., Symonenko, R., Holovashchenko, O., & Hrytsuk, V. (2024). Development of an approach to the construction of an adapted model for ensuring the thermal readiness processes of a vehicle based on fuel consumption and exhaust gas emissions. Eastern-European Journal of Enterprise Technologies, 6(4 (132), 26–45. https://doi.org/10.15587/1729-4061.2024.316922

Issue

Section

Mathematics and Cybernetics - applied aspects