Determining the impact of plastering materials on temperature distribution in lightweight concrete enclosure structures exposed to fire

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.317342

Keywords:

fire resistance, thermal insulation capacity, enclosing structures, fire, plaster, temperature distribution

Abstract

The object of this study is lightweight concrete wall structures treated with various types of conventional plasters. The problem addressed in the paper is to determine the effectiveness of different types of plastering to protect walls from the effects of high temperatures and improve the fire resistance of structures.

The samples of one series were fabricated by plastering the aerated concrete wall with a cement-lime plaster while the samples of the other series were plastered with vermiculite-perlite plaster. Samples of the third series were made without plastering (control series). In accordance with the research program, the distribution of temperatures under fire load was determined for all series.

Studies have shown that wall structures plastered with verliculite-perlite mortar demonstrated 3.8 times better thermal insulation characteristics compared to plastering with cement-lime mortar. The fire protection effect of plastering (compared to non-plastered samples) for vermiculite-perlite solution was 6.3 times, and for cement-lime – 1.6. Adhesion failure was observed in cement-lime plaster under high temperatures, highlighting the need for additional fixing when applied to lightweight concrete walls. Theoretical analysis of the results revealed a discrepancy of up to 19 % with the experimental findings.

The high thermal insulation properties of vermiculite-perlite plasters in comparison with cement-lime plasters are well known. A distinctive feature of this study is the quantitative determination of temperature distribution for the investigated plasters under conditions approximating real fire exposure.

The findings of this research can be applied to the design of buildings and structures requiring enhanced fire resistance for wall systems

Author Biography

Serhiy Bula, Lviv Polytechnic National University

PhD, Associate Professor

Department of Building Constructions and Bridges

Institute of Civil Engineering and Building Systems

References

  1. Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukraini za 12 misiatsiv 2023 roku (2024). Kyiv. Available at: https://idundcz.dsns.gov.ua/upload/2/0/1/8/2/6/2/analitychna-dovidka-pro-pojeji-122023.pdf
  2. EN 1991-1-2: Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.2.2002.pdf
  3. EN 1996-1-2: Eurocode 6: Design of masonry structures - Part 1-2: General rules - Structural fire design. Available at: https://www.phd.eng.br/wp-content/uploads/2015/02/en.1996.1.2.2005.pdf
  4. Ulusu, İ., Kurnuç Seyhan, A. (2023). Effect of Expanded Perlite Aggregate Plaster on the Behavior of High-Temperature Reinforced Concrete Structures. Buildings, 13 (2), 384. https://doi.org/10.3390/buildings13020384
  5. Mathews, M. E., Kiran, T., Nammalvar, A., Andrushia, A. D., Alengaram, U. J. (2023). Efficacy of Fire Protection Techniques on Impact Resistance of Self-Compacting Concrete. Buildings, 13 (6), 1487. https://doi.org/10.3390/buildings13061487
  6. Kiran, T., Yadav, S. K., N, A., Mathews, M. E., Andrushia, D., lubloy, E., Kodur, V. (2022). Performance evaluation of lightweight insulating plaster for enhancing the fire endurance of high strength structural concrete. Journal of Building Engineering, 57, 104902. https://doi.org/10.1016/j.jobe.2022.104902
  7. Caetano, H., Laím, L., Santiago, A., Durães, L., Shahbazian, A. (2022). Development of Passive Fire Protection Mortars. Applied Sciences, 12 (4), 2093. https://doi.org/10.3390/app12042093
  8. Tsapko, Y., Bondarenko, O. P., Tsapko, O., Sukhanevych, M. (2024). Justification of the Efficiency of Application of Plaster for Fire Protection of Concrete Structures. Defect and Diffusion Forum, 437, 69–78. https://doi.org/10.4028/p-hdz0vg
  9. Daware, A., Naser, M. Z. (2021). Fire performance of masonry under various testing methods. Construction and Building Materials, 289, 123183. https://doi.org/10.1016/j.conbuildmat.2021.123183
  10. Johanna, L., Judith, K., Alar, J., Birgit, M., Siim, P. (2019). Material properties of clay and lime plaster for structural fire design. Fire and Materials, 45 (3), 355–365. https://doi.org/10.1002/fam.2798
  11. Uygunoğlu, T., Özgüven, S., Çalış, M. (2016). Effect of plaster thickness on performance of external thermal insulation cladding systems (ETICS) in buildings. Construction and Building Materials, 122, 496–504. https://doi.org/10.1016/j.conbuildmat.2016.06.128
  12. Demchyna, B. H., Pelekh, A. B., Oleksyn, H. M., Surmai, M. I. (2009). Povedinka doshchatokleienykh kolon za mistsevoho vplyvu vysokoi temperatury. Visnyk NULP: Teoriya i praktyka budivnytstva, 655, 71–74. Available at: https://ena.lpnu.ua:8443/server/api/core/bitstreams/723343d9-c33b-4ab0-808f-d6889eaea74a/content
  13. Pelekh, A. B., Demchyna, B. H., Shnal, T. M., Bula, S. S., Krochak, O. V. (2008). Naturni vyprobuvannia konstruktsiyi derevianoi ramy na vohnestiykist v umovakh realnoi pozhezhi. Visnyk NULP: Teoriia i praktyka budivnytstva, 6275, 167–172. Available at: https://vlp.com.ua/files/34_17.pdf
  14. Ferozit 220. Available at: https://ferozit.ua/wp-content/uploads/2017/06/TK-F-220-2024.pdf
  15. Teploizoliatsiyna sumish Bauwer Standard. Available at: https://bauwer.ua/images/products/pdf/Standard.pdf
  16. EN 1364-1:2015. Fire resistance tests for non-loadbearing elements - Part 1: Walls. Available at: https://standards.iteh.ai/catalog/standards/cen/bea6cc6b-69a7-4281-b2a4-d43b2c4f84dc/en-1364-1-2015?srsltid=AfmBOoqF4Zlvch24inwBta7P7FrdXchQZIkDS4XtfncRBtCvsXe0HPs4
  17. Bula, S. S., Boiko, R. O. (2014). Pat. No. 93911 UA. Pich dlia vohnevykh vyprobuvan budivelnykh konstruktsiy ta teplofizychnykh vyprobuvan materialiv. No. u201403476; declareted: 04.04.2014; published: 27.10.2014, Bul. No. 20. Available at: https://sis.nipo.gov.ua/uk/search/detail/659768/
  18. ISO 834-1:1999. Fire-resistance tests - Elements of building construction - Part 1: General requirements. Available at: https://www.iso.org/standard/2576.html
  19. Incropera, F. P., DeWitt, D. P., Bergman, T. L., Lavine, A. S. (2007). Fundamentals of Heat and Mass Transfer. John Wiley & Sons. Available at: https://ostad.nit.ac.ir/payaidea/ospic/file8487.pdf
  20. QuickField. Available at: https://quickfield.com/
  21. QuickField. Version 6.6 User's Guide. Available at: https://quickfield.com/downloads/quickfield_manual.pdf
  22. Terzic, A., Stojanovic, J., Andric, L., Milicic, L., Radojevic, Z. (2020). Performances of vermiculite and perlite based thermal insulation lightweight concretes. Science of Sintering, 52 (2), 149–162. https://doi.org/10.2298/sos2002149t
  23. Sandaka, G., Al-Karawi, J., Specht, E., Silva, M. (2017). Thermophysical properties of lime as a function of origin (Part 4): Thermal conductivity. ZKG International, 70 (3), 36–41. Available at: https://www.zkg.de/en/artikel/zkg_Thermophysical_properties_of_lime_as_a_function_of_origin_Part_4-2772549.html
  24. Table of emissivity of various surfaces. Available at: https://www.transmetra.ch/images/transmetra_pdf/publikationen_literatur/pyrometrie-thermografie/emissivity_table.pdf
  25. EN 1363-1:2020. Fire resistance tests - Part 1: General requirements. Available at: https://standards.iteh.ai/catalog/standards/cen/243adbdc-e0e0-43ac-a801-22c8e91e7f3c/en-1363-1-2020?srsltid=AfmBOoobqrBIphw5GPrTfIPHaltsdw-iLdsKQy4aTGWV1zyL_CDygVut
Determining the impact of plastering materials on temperature distribution in lightweight concrete enclosure structures exposed to fire

Downloads

Published

2024-12-27

How to Cite

Bula, S. (2024). Determining the impact of plastering materials on temperature distribution in lightweight concrete enclosure structures exposed to fire. Eastern-European Journal of Enterprise Technologies, 6(10 (132), 46–54. https://doi.org/10.15587/1729-4061.2024.317342