Devising a method for detecting information threats in the Ukrainian cyber space based on machine learning

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.317456

Keywords:

information threat, fake news, machine learning, disinformation detection, dataset, cyber security

Abstract

The object of this study is a disinformation detection process based on search algorithms for identifying fake news. The main task was to define a set of criteria and parameters for detecting the Ukrainian-language disinformation based on machine learning. A methodology has been considered for developing and filling a dataset of fakes for further training of the model and testing it for the purpose of identifying disinformation and propaganda, as well as determining the attributes of primary sources and routes of their distribution. This makes it possible to reasonably approach the definition of a model for forecasting the development of information threats in the cyberspace of Ukraine. In particular, the accuracy of automatic detection of the probability of disinformation in texts can be increased. For the English-language texts using balanced datasets for training when applying classical machine learning classifiers, the accuracy of identification and recognition of fakes is ³90 %, and for the Ukrainian-language texts – ³52 % and £90 %. That has made it possible to devise requirements for the structure and content of a typical dataset of fakes in the period after the full-scale invasion of Ukraine. The practical result of this work is the designed decision-making support system for monitoring, detecting, recognizing, and forecasting information threats in the cyberspace of Ukraine based on NLP and machine learning. The implementation of preliminary processing of the Ukrainian-language news, taking into account the linguistic features of the language in the text, increases the accuracy of fake identification by »1.72 times. Approaches to the construction of models for forecasting the development of information threats in cyberspace have been developed, which is an urgent task when fake news and information manipulation can affect public sentiment, politics, and the economy

Author Biographies

Victoria Vysotska, Lviv Polytechnic National University

PhD, Associate Professor

Department of Information Systems and Networks

Mariia Nazarkevych, Lviv Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Information Systems and Networks

Serhii Vladov, Kremenchuk Flight College of Kharkiv National University of Internal Affairs

PhD

Department of Scientific Activity Organization

Olga Lozynska, Lviv Polytechnic National University

PhD, Associate Professor

Department of Information Systems and Networks

Oksana Markiv, Lviv Polytechnic National University

PhD, Associate Professor

Department of Information Systems and Networks

Roman Romanchuk, LLC TIETO UKRAINE SUPPORT SERVICES

Head of Projects and Programs in the Field of Non-Material Production

Vitalii Danylyk, Genesis Space

Full-Stack Developer

References

  1. Trofymenko, O. H. (2019). Monitorynh stanu kiberbezpeky v Ukraini. Pravove zhyttia suchasnoi Ukrainy. Mizhnar. nauk.-prakt. konf. Vol. 1. Odesa: VD «Helvetyka», 642–646. Available at: https://dspace.onua.edu.ua/items/3aa8c85a-0013-4a36-9c74-bedbcd915593
  2. Trofymenko, O., Prokop, Y., Loginova, N., Zadereyko, O. (2019). Cybersecurity of Ukraine: analysis of the current situation. Ukrainian Information Security Research Journal, 21 (3). https://doi.org/10.18372/2410-7840.21.13951
  3. Yashchuk, V. I. (2024). Rol ta mistse stratehiyi kiberbezpeky ukrainy u zabezpechenni informatsiynoi bezpeky derzhavy. Available at: https://sci.ldubgd.edu.ua/jspui/bitstream/123456789/13824/1/1%20Yashchuk_monogr_rozdil13.pdf
  4. Deiaki pytannia reahuvannia subiektamy zabezpechennia kiberbezpeky na rizni vydy podiy u kiberprostori (2023). Postanova Kabinetu Ministriv Ukrainy vid 04.04.23 r. No. 299. Available at: https://zakon.rada.gov.ua/laws/show/299-2023-п#Text
  5. Vysotska, V., Chyrun, L., Chyrun, S., Holets, I. (2024). Information technology for identifying disinformation sources and inauthentic chat users' behaviours based on machine learning. CEUR Workshop Proceedings, 3723, 427–465. Available at: https://ceur-ws.org/Vol-3723/paper24.pdf
  6. Vysotska, V., Przystupa, K., Chyrun, L., Vladov, S., Ushenko, Y., Uhryn, D., Hu, Z. (2024). Disinformation, Fakes and Propaganda Identifying Methods in Online Messages Based on NLP and Machine Learning Methods. International Journal of Computer Network and Information Security, 16 (5), 57–85. https://doi.org/10.5815/ijcnis.2024.05.06
  7. Khairova, N., Galassi, A., Lo, F., Ivasiuk, B., Redozub, I. (2024). Unsupervised approach for misinformation detection in Russia-Ukraine war news. Proceedings of the 8th International Conference on Computational Linguistics and Intelligent Systems. Volume IV: Computational Linguistics Workshop. https://doi.org/10.31110/colins/2024-4/003
  8. Wierzbicki, A., Shupta, A., Barmak, O. (2024). Synthesis of model features for fake news detection using large language models. Proceedings of the 8th International Conference on Computational Linguistics and Intelligent Systems. Volume IV: Computational Linguistics Workshop. https://doi.org/10.31110/colins/2024-4/005
  9. Oliinyk, V.-A., Vysotska, V., Burov, Ye., Mykich, K., Basto-Fernandes, V. (2020). Propaganda Detection in Text Data Based on NLP and Machine Learning. CEUR workshop proceedings, 2631, 132–144. Available at: https://ceur-ws.org/Vol-2631/paper10.pdf
  10. Vysotska, V., Mazepa, S., Chyrun, L., Brodyak, O., Shakleina, I., Schuchmann, V. (2022). NLP Tool for Extracting Relevant Information from Criminal Reports or Fakes/Propaganda Content. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 93–98. https://doi.org/10.1109/csit56902.2022.10000563
  11. Dar, R. A., Hashmy, Dr. R. (2023). A Survey on COVID-19 related Fake News Detection using Machine Learning Models. CEUR Workshop Proceedings, 3426, 36–46. Available at: https://ceur-ws.org/Vol-3426/paper4.pdf
  12. Mykytiuk, A., Vysotska, V., Markiv, O., Chyrun, L., Pelekh, Y. (2023). Technology of Fake News Recognition Based on Machine Learning Methods. CEUR Workshop Proceedings, 3387, 311–330. Available at: https://ceur-ws.org/Vol-3387/paper24.pdf
  13. Afanasieva, I., Golian, N., Golian, V., Khovrat, A., Onyshchenko, K. (2023). Application of Neural Networks to Identify of Fake News. CEUR Workshop Proceedings, 3396, 346–358. Available at: https://ceur-ws.org/Vol-3396/paper28.pdf
  14. Shupta, A., Barmak, O., Wierzbicki, A., Skrypnyk, T. (2023). An Adaptive Approach to Detecting Fake News Based on Generalized Text Features. CEUR Workshop Proceedings, 3387, 300–310. Available at: https://ceur-ws.org/Vol-3387/paper23.pdf
  15. Saquete, E., Tomás, D., Moreda, P., Martínez-Barco, P., Palomar, M. (2020). Fighting post-truth using natural language processing: A review and open challenges. Expert Systems with Applications, 141, 112943. https://doi.org/10.1016/j.eswa.2019.112943
  16. Elzayady, H., Mohamed, M. S., Badran, K. M., Salama, G. I. (2022). Detecting Arabic textual threats in social media using artificial intelligence: An overview. Indonesian Journal of Electrical Engineering and Computer Science, 25 (3), 1712–1722. http://doi.org/10.11591/ijeecs.v25.i3.pp1712-1722
  17. Shahbazi, Z., Byun, Y.-C. (2021). Fake Media Detection Based on Natural Language Processing and Blockchain Approaches. IEEE Access, 9, 128442–128453. https://doi.org/10.1109/access.2021.3112607
  18. Guo, Z., Schlichtkrull, M., Vlachos, A. (2022). A Survey on Automated Fact-Checking. Transactions of the Association for Computational Linguistics, 10, 178–206. https://doi.org/10.1162/tacl_a_00454
  19. Liu, X., Qi, L., Wang, L., Metzger, M. J. (2023). Checking the Fact-Checkers: The Role of Source Type, Perceived Credibility, and Individual Differences in Fact-Checking Effectiveness. Communication Research. https://doi.org/10.1177/00936502231206419
  20. Martín, A., Huertas-Tato, J., Huertas-García, Á., Villar-Rodríguez, G., Camacho, D. (2022). FacTeR-Check: Semi-automated fact-checking through semantic similarity and natural language inference. Knowledge-Based Systems, 251, 109265. https://doi.org/10.1016/j.knosys.2022.109265
  21. Ali, F., El-Sappagh, S., Islam, S. M. R., Ali, A., Attique, M., Imran, M., Kwak, K.-S. (2021). An intelligent healthcare monitoring framework using wearable sensors and social networking data. Future Generation Computer Systems, 114, 23–43. https://doi.org/10.1016/j.future.2020.07.047
  22. Camacho, D., Panizo-LLedot, Á., Bello-Orgaz, G., Gonzalez-Pardo, A., Cambria, E. (2020). The four dimensions of social network analysis: An overview of research methods, applications, and software tools. Information Fusion, 63, 88–120. https://doi.org/10.1016/j.inffus.2020.05.009
  23. Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., Anuar, N. B. (2020). Applications of link prediction in social networks: A review. Journal of Network and Computer Applications, 166, 102716. https://doi.org/10.1016/j.jnca.2020.102716
  24. Chen, Q., Srivastava, G., Parizi, R. M., Aloqaily, M., Ridhawi, I. A. (2020). An incentive-aware blockchain-based solution for internet of fake media things. Information Processing & Management, 57 (6), 102370. https://doi.org/10.1016/j.ipm.2020.102370
  25. Avelino, M., Rocha, A. A. de A. (2022). BlockProof: A Framework for Verifying Authenticity and Integrity of Web Content. Sensors, 22 (3), 1165. https://doi.org/10.3390/s22031165
  26. Wang, X., Xie, H., Ji, S., Liu, L., Huang, D. (2023). Blockchain-based fake news traceability and verification mechanism. Heliyon, 9 (7), e17084. https://doi.org/10.1016/j.heliyon.2023.e17084
  27. Boyen, X., Herath, U., McKague, M., Stebila, D. (2021). Associative Blockchain for Decentralized PKI Transparency. Cryptography, 5 (2), 14. https://doi.org/10.3390/cryptography5020014
  28. Xue, J., Wang, Y., Tian, Y., Li, Y., Shi, L., Wei, L. (2021). Detecting fake news by exploring the consistency of multimodal data. Information Processing & Management, 58 (5), 102610. https://doi.org/10.1016/j.ipm.2021.102610
  29. Sahoo, S. R., Gupta, B. B. (2021). Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100, 106983. https://doi.org/10.1016/j.asoc.2020.106983
  30. Kaliyar, R. K., Goswami, A., Narang, P., Sinha, S. (2020). FNDNet – A deep convolutional neural network for fake news detection. Cognitive Systems Research, 61, 32–44. https://doi.org/10.1016/j.cogsys.2019.12.005
Devising a method for detecting information threats in the Ukrainian cyber space based on machine learning

Downloads

Published

2024-12-25

How to Cite

Vysotska, V., Nazarkevych, M., Vladov, S., Lozynska, O., Markiv, O., Romanchuk, R., & Danylyk, V. (2024). Devising a method for detecting information threats in the Ukrainian cyber space based on machine learning. Eastern-European Journal of Enterprise Technologies, 6(2 (132), 36–48. https://doi.org/10.15587/1729-4061.2024.317456