Development of multifunctional polymer composites with high red mud content

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.317952

Keywords:

Abstract

Red mud (RM) is one of the large-scale by-products of alumina production, posing significant environmental challenges due to its high alkalinity, toxicity, and substantial accumulation volumes. The object of this study is polymer composite based on styrene-butadiene aqueous dispersion with RM and chamotte (Pa2) as fillers at high concentrations (up to 90 wt. %). The primary problem addressed in this research is finding effective ways to utilize RM as secondary raw material to enhance its recycling efficiency and create multifunctional materials with adjustable properties.

The study established that RM has an irregular plate-like structure with a high active surface area, which facilitates the formation of an open porous composite structure, while Pa2 forms a dense matrix due to its aluminosilicate content. Infrared spectral analysis confirmed the presence of functional groups (OH, Si–O, Al–O) that ensure the interaction of fillers with the polymer matrix. Thermogravimetric analysis demonstrated that RM and Pa2 exhibit similar behavior under heating. Mechanical tests revealed that RM-based composites exhibit high plasticity and energy absorption capacity, whereas Pa2-based composites are characterized by greater stiffness and strength (elastic modulus up to 129.8 MPa).

The results indicate that the choice of filler type and concentration effectively regulates composite properties. The proposed approach enables the recycling of industrial waste and the development of multifunctional materials suitable for use in construction, protective coatings, and the production of structural elements capable of withstanding significant loads

Author Biographies

Liubov Melnyk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD, Associate Professor

Department of Chemical Technology of Composite Materials

Valentin Sviderskyy, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Professor

Department of Chemical Technology of Composite Materials

References

  1. Ahmed, S., Meng, T., Taha, M. (2020). Utilization of red mud for producing a high strength binder by composition optimization and nano strengthening. Nanotechnology Reviews, 9 (1), 396–409. https://doi.org/10.1515/ntrev-2020-0029
  2. Power, G., Gräfe, M., Klauber, C. (2011). Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108 (1-2), 33–45. https://doi.org/10.1016/j.hydromet.2011.02.006
  3. Liu, S., Guan, X., Zhang, S., Dou, Z., Feng, C., Zhang, H., Luo, S. (2017). Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceramics International, 43 (15), 13004–13008. https://doi.org/10.1016/j.ceramint.2017.07.036
  4. Zhang, M., Zhao, M., Zhang, G., Mann, D., Lumsden, K., Tao, M. (2016). Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Construction and Building Materials, 124, 373–382. https://doi.org/10.1016/j.conbuildmat.2016.07.108
  5. Liu, R.-X., Poon, C.-S. (2016). Utilization of red mud derived from bauxite in self-compacting concrete. Journal of Cleaner Production, 112, 384–391. https://doi.org/10.1016/j.jclepro.2015.09.049
  6. Mišík, M., Burke, I. T., Reismüller, M., Pichler, C., Rainer, B., Mišíková, K. et al. (2014). Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Science of The Total Environment, 493, 883–890. https://doi.org/10.1016/j.scitotenv.2014.06.052
  7. Mesgari Abbasi, S., Rashidi, A., Ghorbani, A., Khalaj, G. (2016). Synthesis, processing, characterization, and applications of red mud/carbon nanotube composites. Ceramics International, 42 (15), 16738–16743. https://doi.org/10.1016/j.ceramint.2016.07.146
  8. Liu, Y., Naidu, R. (2014). Hidden values in bauxite residue (red mud): Recovery of metals. Waste Management, 34 (12), 2662–2673. https://doi.org/10.1016/j.wasman.2014.09.003
  9. Liu, W., Yang, J., Xiao, B. (2009). Review on treatment and utilization of bauxite residues in China. International Journal of Mineral Processing, 93 (3-4), 220–231. https://doi.org/10.1016/j.minpro.2009.08.005
  10. Mukiza, E., Zhang, L., Liu, X., Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, Conservation and Recycling, 141, 187–199. https://doi.org/10.1016/j.resconrec.2018.10.031
  11. Abdel-Raheem, M., Santana, L. M. G., Cordava, M. A. P., Martínez, B. O. (2017). Uses of Red Mud as a Construction Material. AEI 2017, 388–399. https://doi.org/10.1061/9780784480502.032
  12. Carneiro, J., Tobaldi, D. M., Capela, M. N., Novais, R. M., Seabra, M. P., Labrincha, J. A. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378. https://doi.org/10.1016/j.wasman.2018.09.032
  13. Mi, H., Yi, L., Wu, Q., Xia, J., Zhang, B. (2021). Preparation of high-strength ceramsite from red mud, fly ash, and bentonite. Ceramics International, 47 (13), 18218–18229. https://doi.org/10.1016/j.ceramint.2021.03.141
  14. Chen, Y., Li, A., Jiang, S. (2024). Wettability and Mechanical Properties of Red Mud–Al2O3 Composites. Materials, 17 (5), 1095. https://doi.org/10.3390/ma17051095
  15. Melnyk, L., Svidersky, V., Chernyak, L., Dorogan, N. (2018). Aspects of making of a composite material when using red mud. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 23–28. https://doi.org/10.15587/1729-4061.2018.125702
  16. Hendricks, H. L., Buchanan, V. E. (2020). Effect of material parameters on the mechanical properties of chemically treated red mud HDPE composites. Polymers and Polymer Composites, 29 (8), 1126–1134. https://doi.org/10.1177/0967391120954064
  17. Bhat, A. H., Abdul, H. P. S., K., A. (2011). Thermoplastic Polymer based Modified Red Mud Composites Materials. Advances in Composite Materials - Ecodesign and Analysis. https://doi.org/10.5772/14377
  18. Melnyk, L. I. (2023). Kompozyt na osnovi system sopolimer – chervonyi shlam. Modern science: challenges of today. Bratislava, 6–38. Available at: https://ela.kpi.ua/handle/123456789/67229
  19. Melnyk, L. I., Cherniak, L. P., Yevpak, V. V. (2024). Composites based on fly ash with different polymer matrixes. Scientific Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, 2 (1), 106–112. https://doi.org/10.32782/2663-5941/2024.1.2/18
  20. Melnyk, L. (2024). Formation of composite with variation of dispersity of filler and type of binder. Technical Sciences and Technologies, 1 (35), 198–203. https://doi.org/10.25140/2411-5363-2024-1(35)-198-203
  21. Brunauer, S., Emmett, P. H., Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60 (2), 309–319. https://doi.org/10.1021/ja01269a023
  22. Bodnar, R. T. (2016). Ekspres-metod vyznachennia kraiovoho kuta zmochuvannia porystykh til. Metody ta prylady kontroliu yakosti, 1 (36), 30–38.
  23. Vovchenko, L., Matzui, L., Zhuravkov, A., Samchuk, A. (2006). Electrical resistivity of compacted TEG and TEG-Fe under compression. Journal of Physics and Chemistry of Solids, 67 (5-6), 1168–1172. https://doi.org/10.1016/j.jpcs.2006.01.042
  24. Hubina, V. H., Kadoshnikov, V. M. (2005). Red mud from the Mykolaiv Alumina Plant – A valuable technogenic raw material. Geological and Mineralogical Bulletin, 2, 122–126.
  25. Palmer, S. J., Reddy, B. J., Frost, R. L. (2009). Characterisation of red mud by UV–vis–NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71 (5), 1814–1818. https://doi.org/10.1016/j.saa.2008.06.038
  26. Wang, Q., Wang, D., Chen, H. (2017). The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cement and Concrete Composites, 83, 125–137. https://doi.org/10.1016/j.cemconcomp.2017.07.021
Development of multifunctional polymer composites with high red mud content

Downloads

Published

2024-12-27

How to Cite

Melnyk, L., & Sviderskyy, V. (2024). Development of multifunctional polymer composites with high red mud content. Eastern-European Journal of Enterprise Technologies, 6(12 (132), 34–43. https://doi.org/10.15587/1729-4061.2024.317952

Issue

Section

Materials Science