Optimization of data transmission in sensor networks for enhanced control of ozonator efficiency

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.318585

Keywords:

sensor networks, real-time control, ozonator efficiency, effect of pressure and temperature, ozone concentration, energy efficiency, system reliability

Abstract

The main object of the research is the efficiency of real-time ozonator control based on sensor networks. The study addressed the issue of low efficiency in ozonator control systems and the lack of reliability and speed in real-time data transmission. The research revealed that changes in pressure and temperature have a direct impact on ozone concentration. This finding made it possible to increase the ozonator's productivity by 15 %, reduce energy consumption by 10 %, and improve system reliability by 20 %. The key features of the results include the ability to monitor ozone levels in real-time, maintaining the stability of the ozonator, and optimizing its performance. Additionally, sensor networks ensured fast and accurate data delivery, enhancing the energy efficiency and reliability of the system. These results were explained based on experimental data that demonstrated how changes in pressure and temperature affect ozone concentration. The use of sensor networks contributed to increased system stability, reduced energy consumption, and improved control accuracy. The obtained results can be applied to ozonator systems and other fields requiring real-time environmental monitoring and control. The methods proposed in the study provide opportunities for optimizing industrial processes, reducing costs, and achieving sustainable development goals

Author Biographies

Askar Abdykadyrov, Satbayev University

Candidate of Technical Sciences

Department of Electronics, Telecommunications and Space Technologies

Sunggat Marxuly, Satbayev University

Doctoral Student

Department of Electronics, Telecommunications and Space Technologies

Gulzhaina Tolen, Satbayev University

Senior Lecturer

Department of Electronics, Telecommunications and Space Technologies

Ainur Kuttybayeva, Satbayev University

Candidate of Economic Sciences

Department of Electronics, Telecommunications and Space Technologies

Mukhit Abdullayev, Satbayev University

Candidate of Technical Sciences

Department of Radio Engineering, Electronics and Space Technologies

Gulnar Sharipova, Satbayev University

Master of Science in Engineering

Department of Radio Engineering, Electronics and Space Technologies

References

  1. Sydykova, G., Umbetova, S., Baimakhanova, Z., Abieva, G., Kurmanbayev, G. (2023). Modern Applications of Ozone Technology. Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10 (04). https://doi.org/10.5109/7160908
  2. Abdykadyrovk, A., Marxulyk, S., Baikenzheyeva, A., Bakyt, G., Abdullayev, S., Kuttybayeva, A. E. (2023). Research of the Process of Ozonation and Sorption Filtration of Natural and Anthropogenicly Pollated Waters. Journal of Environmental Management and Tourism, 14 (3), 811. https://doi.org/10.14505/jemt.v14.3(67).20
  3. Abdykadyrov, A., Marxuly, S., Kuttybayeva, A., Almuratova, N., Yermekbayev, M., Ibekeyev, S. et al. (2023). Study of the Process of Destruction of Harmful Microorganisms in Water. Water, 15 (3), 503. https://doi.org/10.3390/w15030503
  4. Draginsky, V. L., Alekseeva, L. P., Samoilovich, V. G. (2007). Ozonation in water purification processes. Moscow: Delhi Print, 190.
  5. Brodowska, A. J., Nowak, A., Śmigielski, K. (2017). Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition, 58 (13), 2176–2201. https://doi.org/10.1080/10408398.2017.1308313
  6. Chys, M., Audenaert, W. T. M., Stapel, H., Ried, A., Wieland, A., Weemaes, M. et al. (2018). Techno-economic assessment of surrogate-based real-time control and monitoring of secondary effluent ozonation at pilot scale. Chemical Engineering Journal, 352, 431–440. https://doi.org/10.1016/j.cej.2018.07.041
  7. Petani, L., Koker, L., Herrmann, J., Hagenmeyer, V., Gengenbach, U., Pylatiuk, C. (2020). Recent Developments in Ozone Sensor Technology for Medical Applications. Micromachines, 11 (6), 624. https://doi.org/10.3390/mi11060624
  8. Manfredi, J. (2019). Ozone Applications in Biotech and Pharmaceuticals. Filtration and Purification in the Biopharmaceutical Industry, 609–626. https://doi.org/10.1201/9781315164953-24
  9. İbanoğlu, Ş. (2023). Applications of ozonation in the food industry. Non-Thermal Food Processing Operations, 55–91. https://doi.org/10.1016/b978-0-12-818717-3.00003-2
  10. Iqbal, M. M., Muhammad, G., Hussain, M. A., Hanif, H., Raza, M. A., Shafiq, Z. (2023). Recent trends in ozone sensing technology. Analytical Methods, 15 (23), 2798–2822. https://doi.org/10.1039/d3ay00334e
  11. Petruci, J. F. da S., Barreto, D. N., Dias, M. A., Felix, E. P., Cardoso, A. A. (2022). Analytical methods applied for ozone gas detection: A review. TrAC Trends in Analytical Chemistry, 149, 116552. https://doi.org/10.1016/j.trac.2022.116552
  12. Williams, D. E., Henshaw, G. S., Bart, M., Laing, G., Wagner, J., Naisbitt, S., Salmond, J. A. (2013). Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network. Measurement Science and Technology, 24 (6), 065803. https://doi.org/10.1088/0957-0233/24/6/065803
  13. Thomas, G. W., Sousan, S., Tatum, M., Liu, X., Zuidema, C., Fitzpatrick, M. et al. (2018). Low-Cost, Distributed Environmental Monitors for Factory Worker Health. Sensors, 18 (5), 1411. https://doi.org/10.3390/s18051411
  14. Yi, W., Lo, K., Mak, T., Leung, K., Leung, Y., Meng, M. (2015). A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors, 15 (12), 31392–31427. https://doi.org/10.3390/s151229859
  15. Rodríguez-Peña, M., Barrios Pérez, J. A., Lobato, J., Saez, C., Barrera-Díaz, C. E., Rodrigo, M. A. (2022). Influence of pressure and cell design on the production of ozone and organic degradation. Separation and Purification Technology, 297, 121529. https://doi.org/10.1016/j.seppur.2022.121529
  16. Homola, T., Pongrác, B., Zemánek, M., Šimek, M. (2019). Efficiency of Ozone Production in Coplanar Dielectric Barrier Discharge. Plasma Chemistry and Plasma Processing, 39 (5), 1227–1242. https://doi.org/10.1007/s11090-019-09993-6
  17. Lewis, A., Peltier, W. R., von Schneidemesser, E. (Eds.) (2018). Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications. World Meteorological Organization. Available at: https://eprints.whiterose.ac.uk/135994/1/WMO_Low_cost_sensors_post_review_final.pdf
  18. Chang, M. B., Wu, S.-J. (1997). Experimental Study on Ozone Synthesis via Dielectric Barrier Discharges. Ozone: Science & Engineering, 19 (3), 241–254. https://doi.org/10.1080/01919519708547304
  19. Park, Y., Dong, K.-Y., Lee, J., Choi, J., Bae, G.-N., Ju, B.-K. (2009). Development of an ozone gas sensor using single-walled carbon nanotubes. Sensors and Actuators B: Chemical, 140 (2), 407–411. https://doi.org/10.1016/j.snb.2009.04.055
  20. Janssen, C., Simone, D., Guinet, M. (2011). Preparation and accurate measurement of pure ozone. Review of Scientific Instruments, 82 (3), 034102. https://doi.org/10.1063/1.3557512
  21. Kaiser, H.-P., Köster, O., Gresch, M., Périsset, P. M. J., Jäggi, P., Salhi, E., von Gunten, U. (2013). Process Control For Ozonation Systems: A Novel Real-Time Approach. Ozone: Science & Engineering, 35 (3), 168–185. https://doi.org/10.1080/01919512.2013.772007
  22. Kalandarov, P., Murodova, G. (2024). Study on microprocessor control of agricultural greenhouse microclimate. E3S Web of Conferences, 497, 03026. https://doi.org/10.1051/e3sconf/202449703026
  23. Jodzis, S., Baran, K. (2022). The influence of gas temperature on ozone generation and decomposition in ozone generator. How is ozone decomposed? Vacuum, 195, 110647. https://doi.org/10.1016/j.vacuum.2021.110647
  24. Majewski, J. (2012). Methods for measuring ozone concentration in ozone-treated water. Przegląd Elektrotechniczny (Electrical Review), 88, 253–255. Available at: http://pe.org.pl/articles/2012/9b/61.pdf
  25. Nakagawa, H., Okazaki, S., Asakura, S., Shimizu, H., Iwamoto, I. (2001). A new ozone sensor for an ozone generator. Sensors and Actuators B: Chemical, 77 (1-2), 543–547. https://doi.org/10.1016/s0925-4005(01)00696-7
  26. Abdykadyrov, A. A., Korovkin, N. V., Tashtai, E. T., Syrgabaev, I., Mamadiyarov, M. M., Sunggat, M. (2021). Research of the process of disinfection and purification of drinking water using ETRO-02 plant based on high-frequency corona discharge. 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 1–4. https://doi.org/10.1109/reepe51337.2021.9388046
  27. Abdykadyrov, A. A., Korovkin, N. V., Mamadiyarov, M. M., Tashtay, Y., Domrachev, V. N. (2020). Practical Research of Efficiency of the Installation Etro-02 Ozonizer Based on the Corona Discharge. 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 1–5. https://doi.org/10.1109/reepe49198.2020.9059150
  28. Kozhaspaev, N., Makanov, U., Bokanova, A. A., Abdykadyrov, A. A., Dagarbek, R., Kodzhavergenova, A. K. (2016). Experience in application of ozonic technology for sewage treatment in the Kumkul region of Kazakhstan. Journal of Industrial Pollution Control, 32 (2), 486–489. Available at: https://www.icontrolpollution.com/articles/experience-in-application-of-ozonic-technology-for-sewage-treatment-in-the-kumkul-region-of-kazakhstan.php?aid=79551
  29. Ando, M., Biju, V., Shigeri, Y. (2018). Development of Technologies for Sensing Ozone in Ambient Air. Analytical Sciences, 34 (3), 263–267. https://doi.org/10.2116/analsci.34.263
  30. Abdykadyrov, A. A., Kozhaspaev, N. K., Dagarbek, R., Rakhimov, D. T., Turdybek, B. (2014). Innovation Pat. No. 28562. Device for obtaining an ozone-air mixture "ETRO-02". Available at: https://kz.patents.su/patents/abdykadyrov-askar-ajjtmyrzaevich
  31. Nakagawa, H., Okazaki, S., Asakura, S., Iwamoto, I., Shimizu, H. (2001). Sensing characteristics of a newly developed ozone sensor. Analytical Sciences/Supplements, 17, i253–i256. https://doi.org/10.14891/analscisp.17icas.0.i253.0
Optimization of data transmission in sensor networks for enhanced control of ozonator efficiency

Downloads

Published

2024-12-25

How to Cite

Abdykadyrov, A., Marxuly, S., Tolen, G., Kuttybayeva, A., Abdullayev, M., & Sharipova, G. (2024). Optimization of data transmission in sensor networks for enhanced control of ozonator efficiency. Eastern-European Journal of Enterprise Technologies, 6(2 (132), 83–94. https://doi.org/10.15587/1729-4061.2024.318585