Determining the physical-chemical parametere of fuel mixtures of natural gas with hydrogen in gas networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.318930

Keywords:

"green" hydrogen, network gas, calorific value, Wobbe number, flash point

Abstract

The object of this study is a gas mixture of natural gas and hydrogen.

The physical and chemical parameters of fuel mixtures of natural gas with hydrogen have been investigated with the aim of further regulating the hydrogen content in the gas transmission system in accordance with the state standards of Ukraine and the European Union. The task addressed was the safe use of green hydrogen in a mixture with natural gas.

 The permissible hydrogen content in municipal network gas was established at 7 mol %, which would allow efficient and safe use of existing gas transmission systems. Currently, a 4 % increase in pressure is recommended for low-pressure networks. This is because the calorific value of natural gas is regulated by the Code of Gas Transmission and Distribution Systems and must be within certain limits, and compliance with this particular hydrogen content in natural gas allows this indicator to be kept within the normal range. The 4 % increase in pressure is due to the preservation of the thermal power of gas burners when one gaseous fuel is replaced by another.

The content of the mixture of combustible gases at the lower and upper flash points was analyzed. It was found that at 7 % hydrogen content, the flash point range is 5.07–16.75 vol %, which is within the permissible range of 5–15 vol %. With an increase in the hydrogen content of the gas, an explosion may occur in a wider range of concentrations and require additional safety measures.

The defined hydrogen limit does not affect the explosiveness of network gas and ensures the safety of its use since the lower concentration limit of flammability (in terms of methane) in a mixture with air in volume percentage is 4.4, and the upper limit is 17.0 vol % according to Annex 2 of the technical regulations

Author Biographies

Yuriі Franchuk, Kyiv National University of Construction and Architecture

PhD

Department of Heat and Gas Supply and Ventilation

Volodymyr Kosilov, JSC "Kyivgas"

Head

Chromatographic Analysis Laboratory of the Department of Emergency and Recovery Works

Yuliia Kovalchuk, Kyiv National University of Construction and Architecture

PhD

Department of Chemistry

References

  1. Zhan, X., Chen, Z., Qin, C. (2022). Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner. Case Studies in Thermal Engineering, 37, 102246. https://doi.org/10.1016/j.csite.2022.102246
  2. Zhou, D., Yan, S., Huang, D., Shao, T., Xiao, W., Hao, J. et al. (2022). Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes. Energy, 239, 121629. https://doi.org/10.1016/j.energy.2021.121629
  3. Pylypenko, R. A., Smiyan, B. S., Tsvetkov, S. V., Pikashov, V. S., Melnikov, R. V., Logvinenko, D. M. (2022). Substitution of natural gas and mixtures of process gases. Energy Technologies & Resource Saving, 1, 24–32. https://doi.org/10.33070/etars.1.2022.03
  4. Volchyn, I. A., Yasynetskyi, A. O., Przybylski, W. (2022). Environmental aspects of green ammonia role in Ukrainian energy sector. Energy Technologies & Resource Saving, 2, 76–83. https://doi.org/10.33070/etars.2.2022.07
  5. Li, J., Lai, S., Chen, D., Wu, R., Kobayashi, N., Deng, L., Huang, H. (2021). A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.760356
  6. Kyrychenko, V. I., Kyrychenko, V. V., Nezdorovin, V. P. (2022). The problem of hydrogen, hydrogen and atomic-hydrogen energy: physical, chemical and technological aspects, technical and economic analysis (review). Energy Technologies & Resource Saving, 3, 20–40. https://doi.org/10.33070/etars.3.2022.02
  7. Dolci, F., Thomas, D., Hilliard, S., Guerra, C. F., Hancke, R., Ito, H. et al. (2019). Incentives and legal barriers for power-to-hydrogen pathways: An international snapshot. International Journal of Hydrogen Energy, 44 (23), 11394–11401. https://doi.org/10.1016/j.ijhydene.2019.03.045
  8. Kovač, A., Paranos, M., Marciuš, D. (2021). Hydrogen in energy transition: A review. International Journal of Hydrogen Energy, 46 (16), 10016–10035. https://doi.org/10.1016/j.ijhydene.2020.11.256
  9. Melaina, M. W., Antonia, O., Penev, M. (2013). Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/1068610
  10. Samanta, S., Roy, D., Roy, S., Smallbone, A., Paul Roskilly, A. (2024). Modelling of hydrogen blending into the UK natural gas network driven by a solid oxide fuel cell for electricity and district heating system. Fuel, 355, 129411. https://doi.org/10.1016/j.fuel.2023.129411
  11. Guandalini, G., Colbertaldo, P., Campanari, S. (2017). Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Applied Energy, 185, 1712–1723. https://doi.org/10.1016/j.apenergy.2016.03.006
  12. Mayrhofer, M., Koller, M., Seemann, P., Prieler, R., Hochenauer, C. (2021). Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces. International Journal of Hydrogen Energy, 46 (41), 21672–21686. https://doi.org/10.1016/j.ijhydene.2021.03.228
  13. Nguyen, T. T., Park, J., Kim, W. S., Nahm, S. H., Beak, U. B. (2020). Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel. International Journal of Hydrogen Energy, 45 (3), 2368–2381. https://doi.org/10.1016/j.ijhydene.2019.11.013
  14. Patel, M., Roy, S., Roskilly, A. P., Smallbone, A. (2022). The techno-economics potential of hydrogen interconnectors for electrical energy transmission and storage. Journal of Cleaner Production, 335, 130045. https://doi.org/10.1016/j.jclepro.2021.130045
  15. Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jäger-Waldau, A. (2021). Green hydrogen in Europe – A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Conversion and Management, 228, 113649. https://doi.org/10.1016/j.enconman.2020.113649
  16. Nykonorov, O. (2020). Rol hazotransportnoi infrastruktury Ukrainy v rozvytku vodnevoi enerhetyky. Netradytsiyni tekhnolohiyi ta enerhoefektyvnist, 5, 3–8.
  17. Soroka, B. S., Pianykh, K. Ye., Zghurskyi, V. O., Horupa, V. V., Kudriavtsev, V. S. (2020). Enerhetychni ta ekolohichni kharakterystyky pobutovykh hazovykh pryladiv pry vykorystanni metano-vodnevoi sumishi palyvnoho hazu. Netradytsiyni tekhnolohiyi ta enerhoefektyvnist, 6, 3–13.
  18. Iurzhenko, M. V., Kovalchuk, M. O., Kondratenko, V. Yu., Demchenko, V. L., Gusakova, K. G., Verbovskyi, V. S. et al. (2023). Influence of hydrogen-methane gas mixtures on the physical and chemical structure of polyethylene pipes of the operating gasdistribution networks of Ukraine. Technical Diagnostics and Non-Destructive Testing, 2, 41–46. https://doi.org/10.37434/tdnk2023.02.06
  19. Gondal, I. A. (2019). Hydrogen integration in power-to-gas networks. International Journal of Hydrogen Energy, 44 (3), 1803–1815. https://doi.org/10.1016/j.ijhydene.2018.11.164
  20. Wahl, J., Kallo, J. (2020). Quantitative valuation of hydrogen blending in European gas grids and its impact on the combustion process of large-bore gas engines. International Journal of Hydrogen Energy, 45 (56), 32534–32546. https://doi.org/10.1016/j.ijhydene.2020.08.184
  21. Kolienko, A. H. (2021). Vykorystannia sumishi pryrodnoho hazu i vodniu yak palyva v komunalno-pobutovykh promyslovykh palyvospaliuvadbnykh teploheneruiuchykh ustanovkakh. Naftova haluz Ukrainy. Netradytsiyni tekhnolohiyi, 4 (52), 25–30. Available at: https://reposit.nupp.edu.ua/bitstream/PoltNTU/10188/1/%D0%9A%D0%BE%D0%BB%D1%96%D1%94%D0%BD%D0%BA%D0%BE.pdf
  22. Pro vnesennia zmin do deiakykh zakoniv Ukrainy shchodo zaprovadzhennia na rynku pryrodnoho hazu obliku ta rozrakhunkiv za obsiahom hazu v odynytsiakh enerhiyi. Available at: https://zakon.rada.gov.ua/laws/show/1850-20#Text
  23. DBN V.2.5-20:2018. Gas Supply (2019). Kyiv. Available at: https://dreamdim.ua/wp-content/uploads/2019/04/DBN-V2520-18_Gas.pdf
Determining the physical-chemical parametere of fuel mixtures of natural gas with hydrogen in gas networks

Downloads

Published

2024-12-30

How to Cite

Franchuk, Y., Kosilov, V., & Kovalchuk, Y. (2024). Determining the physical-chemical parametere of fuel mixtures of natural gas with hydrogen in gas networks. Eastern-European Journal of Enterprise Technologies, 6(6 (132), 49–58. https://doi.org/10.15587/1729-4061.2024.318930

Issue

Section

Technology organic and inorganic substances