Development of aluminium-based metal-dielectric structures with energy-saving properties

Authors

  • Александра Владимировна Борисова National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056, Ukraine
  • Владимир Григорьевич Вербицкий National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056, Ukraine
  • Александр Викторович Мачулянский National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056, Ukraine
  • Михаил Кузьмич Родионов National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.32055

Keywords:

metal-dielectric structures, nanoscale layers, spectral-selective characteristics, energy-saving, numerical simulation

Abstract

The spectral-selective characteristics of transparent metal-dielectric structures with energy-saving properties based on nanoscale aluminum layers are investigated. The technique for calculating reflection and transmission coefficients of metal-dielectric structures based on the transfer matrix method which allows to determine the relationship between the electromagnetic response of the metal-dielectric coating with microstructure and optical parameters of its components is presented.

The results of numerical simulation of the spectral-selective characteristics of reflection and transmission coefficients of optically transparent metal-dielectric structures with nanoscale aluminum layers with a thickness of 1-100 nm and antireflection coatings based on aluminum oxide or nitride with a thickness of 200 nm are given. It was found that aluminum-based coatings with thicknesses of up to 5 nm have low-emissivity properties, and with thicknesses of more than 20 nm - reflexive properties. Recommendations on practical use of aluminum-based metal-dielectric structures in energy-saving technologies and possibilities of technological formation of such structures in a single process cycle by vacuum reactive ion-plasma sputtering are presented.

Author Biographies

Александра Владимировна Борисова, National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056

Senior Engineer

Centre for Development of the Information Society

Владимир Григорьевич Вербицкий, National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Microelectronics, Department of Electronics

Александр Викторович Мачулянский, National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Microelectronics, Department of Electronics

Михаил Кузьмич Родионов, National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy, 37, Kyiv, Ukraine, 03056

Doctor of Physics and Mathematics, Professor

Department of Microelectronics, Department of Electronics

References

  1. Agnihotri, O., Gupta, B. (1984). Selektivnye poverhnosti solnechnyh ustanovok [Selective surface solar installations]. Moscow: Mir, 277.
  2. Machulyansky, A. V. (2012). Elektromagnitnye harakteristiki nanokompozitov na osnove nanorazmernyh metallicheskih vkljuchenij. [Electromagnetic characteristics of nanocomposites based on nanoscale metallic inclusions]. Tehnіchna elektrodinamіka, Part 2, 193–197.
  3. Moiseev, S. G. (2010). Active Maxwell-Garnett composite with the unit refractive index. Physica B: Physics of Condensed Matter, 405 (14), 3042–3045. doi: 10.1016/j.physb.2010.01.045
  4. Gadomskij, O. N., Altunin, K. K., Ushakov, N. M., Kosobudskij, I. D., Podvigalkin, V. Ja., Kul'backij, D. M. (2010). Vysokojeffektivnye prosvetljajushhie nanostrukturnye opticheskie pokrytija dlja solnechnyh elementov. [High-performance nanostructured antireflection optical coatings for solar cells]. ZhTF, 80 (6), 83–89.
  5. Zolotuhin, I. V., Kalinin, Ju. V., Sitnikov, A. V. (2006). Nanokompozitnye struktury na puti v nanojelektroniku [Nanocomposite structure on the way to nanoelectronics]. Priroda, 1, 11–19.
  6. Beresnev, O. V., Sobol', D. A. (2012). Kolesnikov i dr. Fiziko-himicheskie i mehanicheskie svojstva nanostrukturnyh nitridnyh pokrytij. [Physico-chemical and mechanical properties of nanostructured nitride coatings]. Metallofiz. novejshie tehnol, 34 (2), 139–160.
  7. Pogrebnjak, A. D., Muhammed, A. K. M. (2012). Properties of AlN films deposited to silicon substrates. International Journal of Structronics & Mechatronics, 1 (2), 1–3.
  8. Borisova, A., Machulyansky, A., Rodionov, M., Yakimenko, Y., Babych, B. (2014). Properties of Aluminum Oxynitride Films Prepared by Reactive Magnetron Sputtering. IEEE XXXIV International Scintific Conference “Electronics and Nanotechnology”, 122–125.
  9. Rozenberg, G. V. (1958). Optika tonkoslojnyh pokrytij [Optics of thin-film coatings]. Moscow: Nauka, 570.
  10. Born, M., Vol'f, D. (1973). Osnovy optiki [Principles of Optics]. Moscow: Nauka, 719.
  11. Tellen, O. (1972). Konstruirovanie mnogoslojnyh interferencionnyh svetofil'trov. [Construction of multilayer interference filters]. Fizika tonkih plenok, 5, 46–83.
  12. Zolotarev, V. M., Morozov, V. N., Smirnova, E. V. (1984). Opticheskie postojannye prirodnyh i tehnicheskih sred. [The optical constants of natural and technical environments]. Lviv: Himija, Leningradskoe otdelenie, 215.

Published

2014-12-23

How to Cite

Борисова, А. В., Вербицкий, В. Г., Мачулянский, А. В., & Родионов, М. К. (2014). Development of aluminium-based metal-dielectric structures with energy-saving properties. Eastern-European Journal of Enterprise Technologies, 6(9(72), 43–47. https://doi.org/10.15587/1729-4061.2014.32055

Issue

Section

Information and controlling system