Determining the loading of an improved tank container for railroad transportation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.321858

Keywords:

rail transport, tank container, tank container design improvement, tank container strength, modal analysis

Abstract

The object of this study is the processes of perception and redistribution of longitudinal loads in the structure of a tank container placed on a flat wagon during a shunting collision. In this paper, the task was solved to ensure the strength of the tank container during rail transportation.

In order to identify the stress concentration in the tank container, mathematical modeling of its longitudinal load under the condition of being placed on a flat wagon during a shunting collision was carried out. The resulting accelerations were taken into account when calculating the strength of the tank container. It was established that the maximum stresses occur in the zone of interaction of the paw with the vertical rack and amount to 938.2 MPa, which is significantly higher than the allowable ones. It has been proposed to improve the tank container by introducing reinforcing elements into its structure. The results of the strength calculation proved the feasibility of the proposed improvement. The maximum stresses in the tank container are about 215 MPa. Also, as part of the research, a modal analysis of the improved tank container was carried out. It was established that the safety of transportation of a tank container by rail transport from the point of view of modal analysis is ensured.

A special feature of the results is that the strength of the tank container was improved by strengthening its frame as the most loaded element of the structure.

The field of practical application of the findings is railroad transport. The conditions for the practical use of the results are the placement of braces of the reinforcing element of the frame at an angle of 45° to the horizontal.

The results of this study will contribute to new technological advancements in the design of modern structures of tank containers, as well as to improving the efficiency of operation of container transportation

Author Biographies

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Department of Wagon Engineering and Product Quality

Arsen Muradian, Odesa National Maritime University

PhD, Associate Professor

Department of Port Operation and Cargo Handling Technology

Hanna Barsukova, Sumy National Agrarian University

PhD, Associate Professor

Department of Energy and Electrical Engineering Systems

Oleksandr Yurchenko, Sumy National Agrarian University

Senior Lecturer

Department of Energy and Electrical Engineering Systems

Oleksii Demydiukov, Odesa National Maritime University

PhD Student

Department of Port Operation and Cargo Handling Technology

References

  1. Dižo, J., Blatnický, M. (2019). Investigation of ride properties of a three-wheeled electric vehicle in terms of driving safety. Transportation Research Procedia, 40, 663–670. https://doi.org/10.1016/j.trpro.2019.07.094
  2. Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. https://doi.org/10.15587/1729-4061.2022.266855
  3. Dižo, J., Blatnický, M., Harušinec, J., Suchánek, A. (2022). Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model. Symmetry, 14 (3), 536. https://doi.org/10.3390/sym14030536
  4. Vatulia, G. L., Lovska, A. O., Krasnokutskyi, Y. S. (2023). Research into the transverse loading of the container with sandwich-panel walls when transported by rail. IOP Conference Series: Earth and Environmental Science, 1254 (1), 012140. https://doi.org/10.1088/1755-1315/1254/1/012140
  5. O’Connell, P. (2012). Improving operational and public safety in shunting operations through active hazard ID. International Conference “Railway safety”. London. Available at: https://international-railway-safety-council.com/wp-content/uploads/2017/09/oconnell-improving-operational-public-safety-in-shunting-operations-through-active-hazard-id.pdf
  6. Semko, Zh. O. (2022). Vymohy normatyvnykh dokumentiv do konteineriv, yaki pryznacheni dlia transportuvannia vantazhiv zaliznychnym transportom. Zbirnyk naukovykh prats «Reikovyi rukhomyi sklad», 24, 61–83. Available at: https://ukrndiv.com.ua/wp-content/uploads/2022/07/6.pdf
  7. Kovalenko, V. (2017). Structural and functional analysis of tank containers. Metallurgical and Mining Industry, 1, 26–31.
  8. Bhattacharyya, R., Hazra, A. (2013). A study on stress analysis of ISO tank container. Proceedings of 58th Congress of ISTAM. Available at: https://www.researchgate.net/publication/316320046_A_study_on_stress_analysis_of_ISO_tank_container
  9. Liguori, A., Formato, A., Pellegrino, A., Villecco, F. (2021). Study of Tank Containers for Foodstuffs. Machines, 9 (2), 44. https://doi.org/10.3390/machines9020044
  10. Wang, Z., Qian, C., Wu, Z. (2023). Stress Analysis and Structural Improvement of LNG Tank Container Frames under Impact from Railway Transport Vehicles. Applied Sciences, 13 (24), 13335. https://doi.org/10.3390/app132413335
  11. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Rybin, A., Kravchenko, O. (2023). Strength Assessment of an Improved Design of a Tank Container under Operating Conditions. Communications - Scientific Letters of the University of Zilina, 25 (3), B186–B193. https://doi.org/10.26552/com.c.2023.047
  12. Wang, Z., Qian, C., Li, W. (2023). Study on Impact Process of a Large LNG Tank Container for Trains. Applied Sciences, 13 (3), 1351. https://doi.org/10.3390/app13031351
  13. Lee, D.-Y., Jo, J.-S., Nyongesa, A. J., Lee, W.-J. (2023). Fatigue Analysis of a 40 ft LNG ISO Tank Container. Materials, 16 (1), 428. https://doi.org/10.3390/ma16010428
  14. Wang, Z., Qian, C. (2020). Strength analysis of LNG tank container for trains under inertial force. Journal of Physics: Conference Series, 1549 (3), 032107. https://doi.org/10.1088/1742-6596/1549/3/032107
  15. Zhao, C., Zhao, S., Xie, S., He, M., Li, X., Li, Y. (2024). New methods and applications of structural dynamics modeling for railway freight liquid tank. Advances in Mechanical Engineering, 16 (11). https://doi.org/10.1177/16878132241274441
  16. Tretiak, E. V., Rechkalov, V. S., Murchkov, S. V. (2020). Protsedura otrymannia dynamichnykh kharakterystyk pid chas spivudarian tank-konteinera dlia transportuvannia roslynnykh oliy. Zbirnyk naukovykh prats «Reikovyi rukhomyi sklad», 21, 44–57.
  17. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Ravlyuk, V., Harusinec, J. (2023). Studying the load of composite brake pads under high-temperature impact from the rolling surface of wheels. EUREKA: Physics and Engineering, 4, 155–167. https://doi.org/10.21303/2461-4262.2023.002994
  18. Dveirin, O. Z., Andreev, O. V., Kondrat’ev, A. V., Haidachuk, V. Ye. (2021). Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. International Applied Mechanics, 57 (2), 234–247. https://doi.org/10.1007/s10778-021-01076-4
  19. Bogomaz, G. I., Mekhov, D. D., Pilipchenko, O. P., Chernomashenceva, YU. G. (1992). Nagruzhennost' kontejnerov-cistern, raspolozhennyh na zheleznodorozhnoy platforme, pri udarah v avtoscepku. Zbirnyk naukovykh prats «Dynamika ta keruvannia rukhom mekhanichnykh system», 87–95.
  20. Andrunyk, V. A., Vysotska, V. A., Pasichnyk, V. V., Chyrun, L. V. (2018). Chyselni metody v kompiuternykh naukakh. Vol. 2. Lviv, 536. Available at: https://library.kre.dp.ua/Books/2-4%20kurs/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B8%20%D1%96%20%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%20%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D1%8C/Andrunik_Chiselni_metodi_v_KN_2018_536.pdf
  21. Honcharov, O. A., Vasylieva, L. V., Yunda, A. M. (2020). Chyselni metody rozviazannia prykladnykh zadach. Sumy, 142. Available at: https://essuir.sumdu.edu.ua/bitstream-download/123456789/79378/3/Honcharov_chyselni_metody.pdf;jsessionid=918A997CF26B8A8B64BDC7C279EF2773
  22. Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
  23. Gerlici, J., Lovska, A., Vatulia, G., Pavliuchenkov, M., Kravchenko, O., Solčanský, S. (2023). Situational Adaptation of the Open Wagon Body to Container Transportation. Applied Sciences, 13 (15), 8605. https://doi.org/10.3390/app13158605
  24. Soukup, J., Skočilas, J., Skočilasová, B., Dižo, J. (2017). Vertical Vibration of Two Axle Railway Vehicle. Procedia Engineering, 177, 25–32. https://doi.org/10.1016/j.proeng.2017.02.178
  25. Dižo, J., Harušinec, J., Blatnický, M. (2015). Multibody System of a Rail Vehicle Bogie with a Flexible Body. Manufacturing Technology, 15 (5), 781–788. https://doi.org/10.21062/ujep/x.2015/a/1213-2489/mt/15/5/781
  26. Gerlici, J., Lovska, A., Pavliuchenkov, M. (2024). Study of the Dynamics and Strength of the Detachable Module for Long Cargoes under Asymmetric Loading Diagrams. Applied Sciences, 14 (8), 3211. https://doi.org/10.3390/app14083211
  27. Lovska, A. O. (2016). Doslidzhennia mitsnosti nesuchoi konstruktsiyi konteinera-tsysterny, rozmishchenoho na vahoni-platformi pry manevrovomu spivudarianni. Zbirnyk naukovykh prats DETUT: Seriya «Transportni systemy i tekhnolohiyi», 28, 90–98.
Determining the loading of an improved tank container for railroad transportation

Downloads

Published

2025-02-26

How to Cite

Lovska, A., Muradian, A., Barsukova, H., Yurchenko, O., & Demydiukov, O. (2025). Determining the loading of an improved tank container for railroad transportation. Eastern-European Journal of Enterprise Technologies, 1(7 (133), 90–98. https://doi.org/10.15587/1729-4061.2025.321858

Issue

Section

Applied mechanics