Design of protective solutions based on a nanomodified gypsum alumina cement system and investigation of their properties

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.324424

Keywords:

Abstract

The object of this study is the structuring processes and the physical-mechanical properties of nanomodified ion-protective coatings based on the gypsum-alumina cement system. Under the influence of ionizing radiation, defects are formed in the calcium hydroxide crystalline lattice causing radiation shrinkage. As a result of the shape anisotropy and aggregate deformations, uneven deformations are transferred to the concrete skeleton. Therefore, the effective use of gypsum alumina binders for creating ion-protective coatings for biological shielding against radioactive radiation is a pressing issue being solved. The sulfate and sulfoaluminate phases solution modification by carbon nanotubes (CNTs) leads to a decrease in the linear expansion coefficient and an increase in the gamma-ray scattering coefficient by 30–40 % due to the high specific surface area. The results are explained by the ettringite phase formation leading to the 15 % increase in the chemically bound moisture content in the optimal composition. At the same time, arithmetic mean value of the chemically bound moisture content improves the linear attenuation coefficient of ionizing radiation by 0.0088–0.009 cm–1. Under such conditions, the total coefficient could reach up to 0.354 cm–1 making it possible to reduce the radiation-protective layer equivalent thickness (14.6 cm–1) by 1–1.5 mm. A special feature of the result, which made it possible to reach the purpose of the study, is the maximum 46 % ettringite content in the most complete water binding contributing to the effective ionizing radiation absorption in the protective coating. The application of research findings is solutions for ion-shielding coatings for X-ray rooms

Author Biography

Hanna Hryshko, Ukrainian State University of Science and Technologies

PhD, Associate Professor

Department of Technologies of Building Materials, Products and Structures

Educational and Scientific Institute  “Prydniprovska State Academy of Civil Engineering and Architecture”

References

  1. Kostyuk, T., Plugin, A., Plugin, D., Bondarenko, O., Dedenova, O. (2023). Mechanism for creating a cement composite with enhanced hydrophysical and radiation protection properties. Collection of Scientific Works of the Ukrainian State University of Railway Transport, 206, 101–111. https://doi.org/10.18664/1994-7852.206.2023.296647
  2. Azeez, A., Mohammed, K., Abdullah, M., Hussin, K., Sandu, A., Razak, R. (2013). The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete. Materials, 6 (10), 4836–4846. https://doi.org/10.3390/ma6104836
  3. Rusyn, B. Н., Sanytskyі, М. А., Hohol, M. М., Kropyvnytskyі, T. S. (2023). Influence of ultrafine active mineral additives on the properties of low-carbon high-performance concretes. Bulletin National University of Water and Environmental Engineering, 4 (104), 66–75. https://doi.org/10.31713/vt420236
  4. Sanytsky, M., Kropyvnytska, T., Нeviuk, I., Sikora, P., Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5 (6 (113)), 62–72. https://doi.org/10.15587/1729-4061.2021.242813
  5. Sanytsky, M., Kropyvnytska, T., Vakhula, O., Bobetsky, Y. (2023). Nanomodified Ultra High-Performance Fiber Reinforced Cementitious Composites with Enhanced Operational Characteristics. Proceedings of CEE 2023, 362–371. https://doi.org/10.1007/978-3-031-44955-0_36
  6. Derevianko, V., Hryshko, H., Smolin, D., Zhurba, I., Dubov, T. (2024). Development of binders based on the СаО–Fe2O3 system. Technology Organic and Inorganic Substances, 4 (6 (130)), 49–58. https://doi.org/10.15587/1729-4061.2024.309128
  7. Fediuk, R., Makarova, N., Qader, D. N., Kozin, A., Amran, M., Petropavlovskaya, V. et al. (2023). Combined effect on properties and durability performance of nanomodified basalt fiber blended with bottom ash-based cement concrete: ANOVA evaluation. Journal of Materials Research and Technology, 23, 2642–2657. https://doi.org/10.1016/j.jmrt.2023.01.179
  8. Voronin, V., Bobrov, Y. (2016). Structuring of nanomodified concrete cured in different temperature and humidity conditions. MATEC Web of Conferences, 86, 04047. https://doi.org/10.1051/matecconf/20168604047
  9. Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., Beskopylny, N. (2022). High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Applied Sciences, 12 (11), 5480. https://doi.org/10.3390/app12115480
  10. Yanze, G. A. N., Nana, A., Lemougna, P. N., Kaze, R. C., Tome, S., Rahier, H. et al. (2024). Development of calcium sulfoaluminate cements from rich‐alumina bauxite and marble wastes: Physicochemical and microstructural characterization. International Journal of Ceramic Engineering & Science, 6 (3). https://doi.org/10.1002/ces2.10216
  11. Wu, J., Liu, L., Deng, Y., Zhang, G., Zhou, A., Xiao, H. (2022). Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism. Journal of Rock Mechanics and Geotechnical Engineering, 14 (3), 909–921. https://doi.org/10.1016/j.jrmge.2021.10.002
  12. Tuinukuafe, A., Noor, L., Ideker, J. H., Isgor, O. B. (2022). Factors Influencing the Electrical Properties of Ettringite Binders as Repair Materials. MATEC Web of Conferences, 364, 02005. https://doi.org/10.1051/matecconf/202236402005
  13. Cao, W., Zhu, H. (2024). A Study on the Application Performance of High-Aspect-Ratio Nano-Ettringite in Photocurable Resin Composites. Materials, 17 (14), 3492. https://doi.org/10.3390/ma17143492
  14. Fang, Z., Zhang, S., Qi, W., Fan, Y., Shah, S. P., Zheng, J. (2024). Study on the Binding Behavior of Chloride Ion and Ettringite in Nano-Metakaolin Cement by Seawater Mixing and Curing Temperatures. Materials, 17 (16), 3943. https://doi.org/10.3390/ma17163943
  15. Zhang, G., Zhang, B., Hao, Y., Pang, Q., Tian, L., Ding, R. et al. (2024). Effects of Lime Powder on the Properties of Portland Cement-Sulphoaluminate Cement Composite System at Low Temperature. Materials, 17 (15), 3658. https://doi.org/10.3390/ma17153658
  16. Tolmachov, S., Belichenko, O. (2017). Prospects of nanoparticles in concrete transport appointment. Budivelni materialy ta vyroby, 1-2, 38–41. Available at: http://nbuv.gov.ua/UJRN/smii_2017_1-2_16
  17. DSTU B EN 13139:2013. Zapovniuvachi dlia rozchynu (EN 13139:2002, IDT). Available at: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=58787
  18. DSTU B EN 1015-12:2012. Metody vyprobuvan rozchynu dlia muruvannia. Chastyna 12. Vyznachennia mitsnosti zcheplennia shtukaturnykh rozchyniv z osnovamy (EN 1015-12:2000, IDT). Available at: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=51052
  19. Hryshko, H., Derevianko, V., Vatazhyshyn, O., Dubov, T. (2024). Researching the influence of the CaO/Al2O3 ratio on ettringite formation and obtaining the structure of a cement paste with special properties. E3S Web of Conferences, 534, 01005. https://doi.org/10.1051/e3sconf/202453401005
Design of protective solutions based on a nanomodified gypsum alumina cement system and investigation of their properties

Downloads

Published

2025-04-23

How to Cite

Hryshko, H. (2025). Design of protective solutions based on a nanomodified gypsum alumina cement system and investigation of their properties. Eastern-European Journal of Enterprise Technologies, 2(12 (134), 25–32. https://doi.org/10.15587/1729-4061.2025.324424

Issue

Section

Materials Science