The development of rice husk based TiO2-SiO2 hybrid organic thin film photovoltaic cell

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.324761

Keywords:

rice husk, TiO2-SiO2 hybrid, thin-film photovoltaic, charge transport, light absorption, electron mobility, photocurrent

Abstract

This study investigates the synthesis, characterization, and photovoltaic performance of a rice husk-based TiO2-SiO2 hybrid organic thin film, which serves as the photoactive layer in an organic photovoltaic (OPV) cell. The object of the study is the TiO2-SiO2 hybrid thin film derived from rice husk, developed to enhance solar energy conversion in OPV applications. Conventional TiO2 thin films typically exhibit low efficiency due to limited electron mobility, small surface area, and weak photon absorption. To overcome these limitations, silicon dioxide (SiO2) was sustainably extracted from rice husk and integrated with TiO2 to form a hybrid material with improved structural and electronic properties. Structural analysis confirmed the formation of a porous composite that enhances charge separation and facilitates more efficient electron transport. Optical studies revealed increased photon absorption across the UV-visible spectrum due to synergistic interactions between TiO2 and SiO2. XRD analysis indicated that the hybrid structure improves crystallinity and potentially enhances carrier mobility. Furthermore, the surface passivation effect of SiO2 helps reduce charge recombination by mitigating defect states in the TiO2 matrix. The fabricated OPV device achieved an open-circuit voltage of 0.72 V, a short-circuit current density of 4.6 mA/cm², and a power conversion efficiency of 2.8 %, exceeding the performance of conventional TiO2-based cells. This enhancement is attributed to optimized charge transport and improved interfacial interaction. The approach demonstrates a sustainable and cost-effective route for high-performance thin-film solar cells using agricultural waste, particularly beneficial for regions with abundant solar energy and limited technological infrastructure

Author Biographies

Tulus Subagyo, Universitas Yudharta Pasuruan; Brawijaya University

Doctor Candidate of Mechanical Engineering

Department of Mechanical Engineering

Denny Widhiyanuriyawan, Universitas Brawijaya

Doctor of Engineering

Department of Mechanical Engineering

Agung Sugeng Widodo, Universitas Brawijaya

Doctor of Engineering

Department of Mechanical Engineering

Willy Satrio Nugroho, Universitas Brawijaya

Doctor of Engineering

Department of Mechanical Engineering

I Nyoman Gede Wardana, Universitas Brawijaya

Doctor of Engineering

Department of Mechanical Engineering

References

  1. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., Sim, L. C. (2019). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27 (3), 2522–2565. https://doi.org/10.1007/s11356-019-07193-5
  2. Hamidi, N., Yuliati, L., Purnami, P., Faiz, N. M. (2024). Thermogravimetric Analysis Of Pulverized Rice Husk Waste Catalytic Combustion With Natural Zeolit. International Journal of Mechanical Engineering Technologies and Applications, 5 (2), 186–194. https://doi.org/10.21776/mechta.2024.005.02.7
  3. Dalanta, F., Kusworo, T. D., Aryanti, N. (2022). Synthesis, characterization, and performance evaluation of UV light-driven Co-TiO2@SiO2 based photocatalytic nanohybrid polysulfone membrane for effective treatment of petroleum refinery wastewater. Applied Catalysis B: Environmental, 316, 121576. https://doi.org/10.1016/j.apcatb.2022.121576
  4. Soenoko, R., Purnami, Dewi, F. G. U. (2017). Second stage cross flow turbine performance. ARPN Journal of Engineering and Applied Sciences, 12 (6). Available at: https://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0317_5818.pdf
  5. Shen, Y. (2017). Rice husk silica derived nanomaterials for sustainable applications. Renewable and Sustainable Energy Reviews, 80, 453–466. https://doi.org/10.1016/j.rser.2017.05.115
  6. Sharma, R., Sharda, H., Dutta, A., Dahiya, A., Chaudhary, R., Singh, A. et al. (2023). Optimizing green hydrogen production: Leveraging load profile simulation and renewable energy integration. International Journal of Hydrogen Energy, 48 (96), 38015–38026. https://doi.org/10.1016/j.ijhydene.2023.03.179
  7. Rehman, M. ur, Wang, H., Han, Q., Shen, Y., Yang, L., Lu, X. et al. (2024). Phyllosilicate-derived Ni/SiO2 catalyst for liquid-phase hydrodeoxygenation of phenol: Synergy of Lewis acid sites and Ni0. Fuel, 378, 132891. https://doi.org/10.1016/j.fuel.2024.132891
  8. Li, Y., Huang, X., Sheriff, H. K. M., Forrest, S. R. (2022). Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nature Reviews Materials, 8 (3), 186–201. https://doi.org/10.1038/s41578-022-00514-0
  9. Solak, E. K., Irmak, E. (2023). Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Advances, 13 (18), 12244–12269. https://doi.org/10.1039/d3ra01454a
  10. Pei, J., Wang, X., Huang, X., Lv, H., Li, Y. (2024). A TiO2-based hybrid solar cell device fabricated by employing interfacial modification and morphology control strategies. Optical Materials, 147, 114662. https://doi.org/10.1016/j.optmat.2023.114662
  11. Wang, X., Yang, J., Wang, X., Zhang, R., Cui, X., Wang, N., Song, J. (2023). Preparation, Characterization and Hydrothermal Stability of Hydrophobic TiO2/SiO2 Membrane. Integrated Ferroelectrics, 234 (1), 126–142. https://doi.org/10.1080/10584587.2023.2191557
  12. Tharani, D., Ananthasubramanian, M. (2023). Influence of pre-treatment processes on the purity and characteristics of silica extracted from rice husk. Biomass Conversion and Biorefinery, 14 (11), 12517–12529. https://doi.org/10.1007/s13399-022-03728-y
  13. Attafi, D., Meftah, A., Boumaraf, R., Labed, M., Sengouga, N. (2021). Enhancement of silicon solar cell performance by introducing selected defects in the SiO2 passivation layer. Optik, 229, 166206. https://doi.org/10.1016/j.ijleo.2020.166206
  14. Dwidiani, N. M., Suardana, N. P. G., Wardana, I. N. G., Septiadi, W. N., Suryawan, A. A. A. (2024). The Prediction of Photoactive Semiconductor Potential of Bio-Activated Rice Husk Ash Using Analytical Method. Journal of the Chinese Society of Mechanical Engineers, 45 (4), 375–383. Available at: https://journal.csme.org.tw/vol_file.aspx?lang=en&fid=20240903232257
  15. Ayanda, O. S., Mmuoegbulam, A. O., Okezie, O., Durumin Iya, N. I., Mohammed, S. E., James, P. H. et al. (2024). Recent progress in carbon-based nanomaterials: critical review. Journal of Nanoparticle Research, 26 (5). https://doi.org/10.1007/s11051-024-06006-2
  16. Purnami, P., Satrio Nugroho, W., Wardana, I. N. G., Permanasari, A. A., Sukarni, S., Gandidi, I. M. et al. (2025). The impact of radio–green light interaction on hydrogen evolution reaction inhibition of carbon based electrophotocatalyst. Carbon Resources Conversion, 100308. https://doi.org/10.1016/j.crcon.2025.100308
  17. Zhu, J., Jin, G., Qin, L. (2023). High-efficiency and cost-effective manufacturing of solar cells based on localized surface plasmonic resonance. Optical Materials, 141, 113897. https://doi.org/10.1016/j.optmat.2023.113897
  18. Purnami, P., N, W. S., Tama, I. P., W, W., Sofi’i, Y. K., Wardana, I. (2025). The analytic hierarchy process for the selection of water electrolysis electromagnetic ionization booster. Electrochimica Acta, 512, 145499. https://doi.org/10.1016/j.electacta.2024.145499
  19. Jiang, Y., Li, Y., Liu, F., Wang, W., Su, W., Liu, W. et al. (2023). Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nature Communications, 14 (1). https://doi.org/10.1038/s41467-023-40806-9
  20. Safari-Gezaz, M., Parhizkar, M., Asghari, E. (2024). Investigation of the structural properties of Si4+-doped HAP coatings on Ti-6Al-4V substrate as a corrosion barrier in biomedical media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 699, 134742. https://doi.org/10.1016/j.colsurfa.2024.134742
  21. Nawaz, R., Saad, M., Bahadur, A., Iqbal, S., Mahmood, S., Zidan, A. et al. (2025). Designing an innovative 2D/2D step scheme α-Fe2O3/BiOBr/MoS2 ternary integrated heterojunction with unparalleled visible-light-induced remarkable photocatalytic H2 evolution. International Journal of Hydrogen Energy, 99, 112–122. https://doi.org/10.1016/j.ijhydene.2024.12.201
  22. Pliskin, W. A., Esch, R. P. (1965). Refractive Index of SiO2 Films Grown on Silicon. Journal of Applied Physics, 36 (6), 2011–2013. https://doi.org/10.1063/1.1714393
  23. Wang, F., Li, J., Zhang, X., Sun, Q., Zheng, B., Zhang, X. et al. (2021). Structural Design for Controlling the Lattice Strain Relaxation Process in TiO2/SiO2 Core–Shell Nanoparticles. ACS Sustainable Chemistry & Engineering, 9 (49), 16796–16807. https://doi.org/10.1021/acssuschemeng.1c06572
  24. Giuliano, F., Reggiani, S., Gnani, E., Gnudi, A., Rossetti, M., Depetro, R., Croce, G. (2022). Characterization and numerical analysis of breakdown in thick amorphous SiO2 capacitors. Solid-State Electronics, 192, 108256. https://doi.org/10.1016/j.sse.2022.108256
  25. Wang, J., Cui, Y., Xu, Y., Xian, K., Bi, P., Chen, Z. et al. (2022). A New Polymer Donor Enables Binary All‐Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Advanced Materials, 34 (35). https://doi.org/10.1002/adma.202205009
The development of rice husk based TiO2-SiO2 hybrid organic thin film photovoltaic cell

Downloads

Published

2025-04-23

How to Cite

Subagyo, T., Widhiyanuriyawan, D., Widodo, A. S., Nugroho, W. S., & Wardana, I. N. G. (2025). The development of rice husk based TiO2-SiO2 hybrid organic thin film photovoltaic cell. Eastern-European Journal of Enterprise Technologies, 2(12 (134), 17–24. https://doi.org/10.15587/1729-4061.2025.324761

Issue

Section

Materials Science