Assessing the possibilities of CNT and EFB fiber reinforcement in rammed earth nanocomposites for structural stability enhancement

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.328309

Keywords:

buckling, rammed earth, empty bunch fibers, composite, nanotubes

Abstract

The object of the study is the rammed earth nanocomposites. Rammed earth nanocomposites reinforced with carbon nanotubes (CNT) and oil palm empty bunch (EFB) fibers provide nanoscale cohesion, and EFB fibers offer macroscale crack bridging, this research aims to significantly improve the material’s mechanical performance. This study pioneers a nanocomposite approach by integrating 1-2 % CNT and EFB fibers into rammed earth, achieving a 539 % increase in compressive strength (from 1.43 MPa to 9.13 MPa) and 34.671 kN buckling resistance to improve structural performance especially for the stability for sustainable construction applications. Standard rammed earth had a compressive strength of 1.43 MPa and buckling resistance, limiting its use; however, when 1 % CNT was added, increased compressive strength to 6.43 MPa (cube) and 6.58 MPa (cylinder), while 2 % CNT further enhanced it to 8.56 MPa and 9.13 MPa, respectively. Flexural strength also improved from 0.98 MPa to 3.60 MPa (beam). Cylindrical specimens showed optimal performance due to uniform stress distribution (34.671 kN buckling resistance). Microstructural analysis reveals CNT enhance nano-scale cohesion while EFB fibers provide macro-scale crack bridging. Compared to conventional concrete, the composite reduces embodied carbon by 62 % (per ISO 14040 LCA standards) and material density by 26 % (1.48 vs 2.0 g/cm3). These findings establish a new paradigm for sustainable seismic-resistant construction in developing tropical regions where both laterite soil and palm oil waste are abundant. The synergy of CNT (nanoscale cohesion) and EFB (load distribution) addresses key limitations. This material is suitable for eco-friendly construction, seismic-resistant structures, and lightweight partitions, offering a sustainable alternative to concrete/steel. The project simultaneously advances sustainable construction materials and provides a blueprint for vocational education that bridges technical and soft skills

Author Biographies

Kinanti Wijaya, Universitas Negeri Medan

Engineering Education Program

Syafiatun Siregar, Universitas Negeri Medan

Building Engineering Education Study Program

Sutrisno Sutrisno, Universitas Negeri Medan

Civil Engineering Study Program

Iswandi Idris, Politeknik LP3I Medan

Computer Engineering Technology Study Program

References

  1. Aditama, A. G., Ardhyananta, H. (2017). Isolasi Selulosa dari Serat Tandan Kosong Kelapa Sawit untuk Nano Filler Komposit Absorpsi Suara: Analisis FTIR. Jurnal Teknik ITS, 6 (2). https://doi.org/10.12962/j23373539.v6i2.24098
  2. Sidebang, E., Bukit, N. (2019). Analisis Sifat Mekanik Kompon Karet. EINSTEIN E-JOURNAL, 6 (2). https://doi.org/10.24114/einstein.v6i2.12081
  3. Saragih, M. T., Ginting, E. M. (2019). Analisis Sifat Mekanik Kompon Karet Dengan Bahan Pengisi Abu Tandan Kosong Kelapa Sawit. EINSTEIN E-JOURNAL, 6 (3). https://doi.org/10.24114/einstein.v6i3.12108
  4. Rahman, T., Fadhlulloh, M. A., Nandiyanto, A. B. D., Mudzakir, A. (2015). REVIEW: Sintesis Karbon Nanopartikel. J. Integr. Proses, 5 (3).
  5. Handayani, N. (2021). Nanokomposit Ramah Lingkungan Melalui Isolasi Nanofibril Selulosa (NFS) Dari Tandan Kosong Sawit Dan Poly Lactid Acid (PLA) Sebagai Matrik. Jurnal Sains Dan Teknologi Reaksi, 18 (02). ttps://doi.org/10.30811/jstr.v18i02.2254
  6. Zhou, T., Zhang, H., Zhang, Z., Zhang, L., Tan, W. (2023). Investigation of intralayer and interlayer shear properties of stabilized rammed earth by direct shear tests. Construction and Building Materials, 367, 130320. https://doi.org/10.1016/j.conbuildmat.2023.130320
  7. Toufigh, V., Samadianfard, S. (2022). Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials. Solar Energy, 244, 474–483. https://doi.org/10.1016/j.solener.2022.08.049
  8. Strazzeri, V., Karrech, A. (2022). Energy and thermal performance of a typical rammed earth residential building in Western Australia. Energy and Buildings, 260, 111901. https://doi.org/10.1016/j.enbuild.2022.111901
  9. Espinach, F. X., Vilaseca, F., Tarrés, Q., Delgado-Aguilar, M., Aguado, R. J., Mutjé, P. (2024). An alternative method to evaluate the micromechanics tensile strength properties of natural fiber strand reinforced polyolefin composites. The case of hemp strand-reinforced polypropylene. Composites Part B: Engineering, 273, 111211. https://doi.org/10.1016/j.compositesb.2024.111211
  10. Ávila, F., Puertas, E., Gallego, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270, 121435. https://doi.org/10.1016/j.conbuildmat.2020.121435
  11. Gil-Martín, L. M., Fernández-Ruiz, M. A., Hernández-Montes, E. (2022). Mechanical characterization and elastic stiffness degradation of unstabilized rammed earth. Journal of Building Engineering, 56, 104805. https://doi.org/10.1016/j.jobe.2022.104805
  12. The creep of Rammed Earth material (2015). Rammed Earth Construction, 61–66. https://doi.org/10.1201/b18046-10
  13. Majidifard, H., Adu-Gyamfi, Y., Buttlar, W. G. (2020). Deep machine learning approach to develop a new asphalt pavement condition index. Construction and Building Materials, 247, 118513. https://doi.org/10.1016/j.conbuildmat.2020.118513
  14. Narloch, P. L., Lidner, M., Kunicka, E., Bielecki, M. (2015). Flexural Tensile Strength of Construction Elements Made out of Cement Stabilized Rammed Earth. Procedia Engineering, 111, 589–595. https://doi.org/10.1016/j.proeng.2015.07.049
  15. Khan, R. (2019). Fiber bridging in composite laminates: A literature review. Composite Structures, 229, 111418. https://doi.org/10.1016/j.compstruct.2019.111418
  16. Rahman, T., Fadhlulloh, M. A., Nandiyanto, A. B. D., Mudzakir, A. (2015). Review: Synthesis of Carbon Nanoparticles. Available at: https://api.semanticscholar.org/CorpusID:100363740
  17. Cheah, C. B., Liew, J. J., Khaw Le Ping, K., Siddique, R., Tangchirapat, W. (2022). Properties of ternary blended cement containing ground granulated blast furnace slag and ground coal bottom ash. Construction and Building Materials, 315, 125249. https://doi.org/10.1016/j.conbuildmat.2021.125249
  18. Zhang, L., Zhang, J., Lv, C., Gao, L., Luo, S., Ren, Y. et al. (2024). Fabrication and characterization of flexible natural cellulosic fiber composites through collaborative modification strategy of sodium hydroxide and γ-Aminopropyl triethoxysilane. International Journal of Biological Macromolecules, 261, 129831. https://doi.org/10.1016/j.ijbiomac.2024.129831
  19. Ramachandrarao, M., Khan, S. H., Abdullah, K. (2025). Carbon nanotubes and nanofibers – reinforcement to carbon fiber composites - synthesis, characterizations and applications: A review. Composites Part C: Open Access, 16, 100551. https://doi.org/10.1016/j.jcomc.2024.100551
  20. Tarfaoui, M., Lafdi, K., El Moumen, A. (2016). Mechanical properties of carbon nanotubes based polymer composites. Composites Part B: Engineering, 103, 113–121. https://doi.org/10.1016/j.compositesb.2016.08.016
Assessing the possibilities of CNT and EFB fiber reinforcement in rammed earth nanocomposites for structural stability enhancement

Downloads

Published

2025-04-30

How to Cite

Wijaya, K., Siregar, S., Sutrisno, S., & Idris, I. (2025). Assessing the possibilities of CNT and EFB fiber reinforcement in rammed earth nanocomposites for structural stability enhancement. Eastern-European Journal of Enterprise Technologies, 2(6 (134), 24–32. https://doi.org/10.15587/1729-4061.2025.328309

Issue

Section

Technology organic and inorganic substances