Estimating the influence of polyorganosiloxanes on the properties of fire-retardant halogen-free polymer compositions for cable articles

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.331134

Keywords:

cable articles, fire-resistant polymer compositions, polyorganosiloxanes, rheological properties, thermophysical properties

Abstract

The object of this study is the processes of supramolecular structure formation and the thermophysical, rheological, physical-mechanical, and electrophysical properties of halogen-free fire-resistant polymer compositions. Aluminum oxide trihydrate is used as a flame retardant. The effect of the flame-retardant filler becomes noticeable only with a significant filling (60%), when the rheological and operational properties of polymer compositions deteriorate. The use of polyorganosiloxanes makes it possible to reduce the negative impact of the filler on the thermophysical, rheological, physical-mechanical, and electrophysical properties. Therefore, the effective use of polyorganosiloxanes to regulate the properties of fire-resistant polymer compositions is an urgent task under consideration.

Fire retardant halogen-free polymer compositions were studied. The content of the flame-retardant filler is 60%. The samples under study additionally contain polyorganosiloxanes, which were used as modifiers for the directed regulation of properties of fire retardant compositions. The effect of polyorganosiloxanes on the formation of the supramolecular structure of filled polymer compositions for cable articles has been established. Due to this, the phase transition temperatures increase by 2–4°C, the temperature of the beginning of decomposition by 12–17°C and the end of decomposition by 5–6°C. The effect of the influence of polyorganosiloxanes with a viscosity of 50–500 Pa·s on a decrease in the melt viscosity of fire retardant polymer compositions from 5.342 to 4.330 Pa·s with an increase in the shear rate from 20 to 60 s-1 has been shown.

The results make it possible to use polyorganosiloxanes for targeted regulation of rheological and operational characteristics of fire-resistant polymer compositions for the manufacture of insulation and sheath of power cables

Author Biographies

Volodymyr Zolotaryov, PJSC "YUZHCABLE WORKS"

Doctor of Technical Sciences, Professor, General Director

Olena Chulieieva, PJSC "YUZHCABLE WORKS"

Doctor of Technical Sciences, Director of Sience and Technology Center

Science and Technology Center

Taras Antonets, PJSC "YUZHCABLE WORKS"

PhD, Deputy Chief Technologist

References

  1. Meinier, R., Sonnier, R., Zavaleta, P., Suard, S., Ferry, L. (2018). Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials, 342, 306–316. https://doi.org/10.1016/j.jhazmat.2017.08.027
  2. Gupta, R., Singh, M. K., Rangappa, S. M., Siengchin, S., Dhakal, H. N., Zafar, S. (2024). Recent progress in additive inorganic flame retardants polymer composites: Degradation mechanisms, modeling and applications. Heliyon, 10 (21), e39662. https://doi.org/10.1016/j.heliyon.2024.e39662
  3. Semenyuk, K. A. (2017). Tehnologicheskie aspekty v reshenii voprosa snizheniya goryuchesti kompozicionnyh materialov. Pozhezhna ta tekhnohenna bezpeka. Materialy vseukrainskoi naukovo-praktychnoi konferentsiyi kursantiv i studentiv. Cherkasy, 92–93. Available at: https://nuczu.edu.ua/images/topmenu/science/konferentsii/2017/2.pdf
  4. Lu, S.-Y., Hamerton, I. (2002). Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science, 27 (8), 1661–1712. https://doi.org/10.1016/s0079-6700(02)00018-7
  5. Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236. https://doi.org/10.1016/j.polymdegradstab.2016.03.030
  6. . Nazir, R., Gooneie, A., Lehner, S., Jovic, M., Rupper, P., Ott, N. et al. (2021). Alkyl sulfone bridged phosphorus flame-retardants for polypropylene. Materials & Design, 200, 109459. https://doi.org/10.1016/j.matdes.2021.109459
  7. Chulieieva, O. V., Plavan, V. P. (2019). Modeliuvannia teplofizychnykh vlastyvostei napovniuvachiv pozhezhobezpechnykh polimernykh kompozytsiy. Materialy IX mizhnarodnoi naukovo-praktychnoi konferentsiyi «Kompleksne zabezpechennia yakosti tekhnolohichnykh protsesiv ta system». Vol. 2. Chernihiv, 19–21. Available at: https://drive.google.com/file/d/107ctOF8LwQWSF8W2yECrxrQm9etpkMF5/view
  8. Ye, L., Miao, Y., Yan, H., Li, Z., Zhou, Y., Liu, J., Liu, H. (2013). The synergistic effects of boroxo siloxanes with magnesium hydroxide in halogen-free flame retardant EVA/MH blends. Polymer Degradation and Stability, 98 (4), 868–874. https://doi.org/10.1016/j.polymdegradstab.2013.01.001
  9. VISCOSPEED in HFFR compounds: Big impact with minimal dosage (2020). Compounding World. Available at: https://viscospeed.com/wp-content/uploads/2021/05/Compounding_World_Article_VISCOSPEED.pdf
  10. El Omari, Y., Yousfi, M., Duchet-Rumeau, J., Maazouz, A. (2023). Interfacial rheology for probing the in-situ chemical reaction at interfaces of molten polymer systems. Materials Today Communications, 35, 105640. https://doi.org/10.1016/j.mtcomm.2023.105640
  11. Xu, J., Chen, C., Li, Y., Zhou, H., Hao, X., Ou, R., Wang, Q. (2024). Optimizing the rheological and mechanical properties of ultra-highly filled wood fiber/polyethylene composites through binary alloy matrix strategy. Composites Science and Technology, 256, 110740. https://doi.org/10.1016/j.compscitech.2024.110740
  12. Bashirgonbadi, A., Delva, L., Caron, E., Marchesini, F. H., Van Geem, K. M., Ragaert, K. (2024). The interplay between macromolecular structure, rheology, processing condition, and morphology for (linear) low density polyethylenes in film blowing. Polymer, 290, 126566. https://doi.org/10.1016/j.polymer.2023.126566
  13. Cardelli, A., Ruggeri, G., Calderisi, M., Lednev, O., Cardelli, C., Tombari, E. (2012). Effects of poly(dimethylsiloxane) and inorganic fillers in halogen free flame retardant poly(ethylene-co-vinyl acetate) compound: A chemometric approach. Polymer Degradation and Stability, 97 (12), 2536–2544. https://doi.org/10.1016/j.polymdegradstab.2012.02.018
  14. Rusanova, S., Stoyanov, O., Sofina, S., Zaikov, G. (2013). IR-Study of Silanol Modification of Ethylene Copolymers. Chemistry & Chemical Technology, 7 (1), 23–26. https://doi.org/10.23939/chcht07.01.023
  15. Rueda, M. M., Auscher, M.-C., Fulchiron, R., Périé, T., Martin, G., Sonntag, P., Cassagnau, P. (2017). Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science, 66, 22–53. https://doi.org/10.1016/j.progpolymsci.2016.12.007
  16. Adesina, A. A., Nasser, M. N., Teixeira, P., Hilliou, L., Covas, J. A., Hussein, I. A. (2015). Rheology of organoclay assisted extrusion of HDPE using Particle Image Velocimetry. Chemical Engineering Research and Design, 100, 113–125. https://doi.org/10.1016/j.cherd.2015.05.018
  17. Faker, M., Razavi Aghjeh, M. K., Ghaffari, M., Seyyedi, S. A. (2008). Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends. European Polymer Journal, 44 (6), 1834–1842. https://doi.org/10.1016/j.eurpolymj.2008.04.002
  18. Durmus, A., Kasgoz, A., Macosko, C. W. (2007). Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48 (15), 4492–4502. https://doi.org/10.1016/j.polymer.2007.05.074
  19. Münstedt, H. (2021). Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers, 13 (7), 1123. https://doi.org/10.3390/polym13071123
  20. Münstedt, H. (2016). Rheological and Morphological Properties of Dispersed Polymeric Materials. Rheological and Morphological Properties of Dispersed Polymeric Materials, I–XVI. https://doi.org/10.3139/9781569906088.fm
  21. Agassant, J.-F., Avenas, P., Carreau, P. J., Vergnes, B., Vincent, M. (2017). Polymer Processing. Verlag: Carl Hanser Verlag GmbH & Co. KG. https://doi.org/10.3139/9781569906064
  22. Zhou, C., Yi, H., Dong, X. (2017). Review of recent research towards power cable life cycle management. High Voltage, 2 (3), 179–187. https://doi.org/10.1049/hve.2017.0037
  23. Karaki, A., Hammoud, A., Masad, E., Khraisheh, M., Abdala, A., Ouederni, M. (2024). A review on material extrusion (MEX) of polyethylene - Challenges, opportunities, and future prospects. Polymer, 307, 127333. https://doi.org/10.1016/j.polymer.2024.127333
  24. Morsalin, S., Phung, B. T. (2020). Dielectric response study of service-aged XLPE cable based on polarisation and depolarisation current method. IEEE Transactions on Dielectrics and Electrical Insulation, 27 (1), 58–66. https://doi.org/10.1109/tdei.2019.008306
  25. Morsalin, S., Phung, T. B., Danikas, M., Mawad, D. (2019). Diagnostic challenges in dielectric loss assessment and interpretation: a review. IET Science, Measurement & Technology, 13 (6), 767–782. https://doi.org/10.1049/iet-smt.2018.5597
  26. Holoborodko, L. V., Zhurenko, A. Yu., Kutsomelia, Yu. Yu., Litsman, Yu. V. (2007). Poliorhanosyloksany i materialy na yikh osnovi. Materialy naukovo-tekhnichnoi konferentsii vykladachiv, spivrobinykiv, aspirantiv i studentiv inzhenernoho fakultetu. Sumy, 10–11. Available at: https://essuir.sumdu.edu.ua/handle/123456789/19009
  27. Schramm, G. (1994). A Practical Approach to Rheology and Rheometry. Gebrueder Haake, 290.
  28. Kuzyaev, I. M., Sviderskiy, V. A., Petuhov, A. D. (2016). Modelirovanie ekstruzii i ekstruderov pri pererabotke polimerov. Ch. 1. Kyiv: NTUU«KPI», 414. Available at: https://ela.kpi.ua/items/8bd0c55e-f776-41a9-9682-9eccc574c3fd
  29. Chulieieva, O., Zolotaryov, V. (2018). Regulation of electrophysical properties of fireproof polymer compositions filled with hydromagnesite for cable products. Technology Audit and Production Reserves, 2 (1 (46)), 21–23. https://doi.org/10.15587/2312-8372.2019.161856
Estimating the influence of polyorganosiloxanes on the properties of fire-retardant halogen-free polymer compositions for cable articles

Downloads

Published

2025-06-17

How to Cite

Zolotaryov, V., Chulieieva, O., & Antonets, T. (2025). Estimating the influence of polyorganosiloxanes on the properties of fire-retardant halogen-free polymer compositions for cable articles. Eastern-European Journal of Enterprise Technologies, 3(6 (135), 6–14. https://doi.org/10.15587/1729-4061.2025.331134

Issue

Section

Technology organic and inorganic substances