Determining the load on the bearing structure of a flat wagon for long cargo in rail-ferry transportation
DOI:
https://doi.org/10.15587/1729-4061.2024.335175Keywords:
railroad transport, flat wagon, design improvement, structural loading, structural strength, railroad-ferry transportationAbstract
This study's object is the processes of perception and redistribution of loads in the supporting structure of a flat wagon for long-length cargo during rail-ferry transportation. The task addressed is to adapt a universal flat wagon for transporting long-length cargo. In this case, it is proposed to improve the structure of a flat wagon by equipping it with frame-type side walls reinforced with sandwich panels.
The proposed technical advancement was substantiated by mathematical modeling of the dynamic loading of the flat wagon during transportation by rail ferry. The calculation results established that the proposed improvement contributes to a reduction in the dynamic loading of a flat wagon's supporting structure by 15% compared to the typical structure. The findings were confirmed by computer simulation. The results of calculating the strength of a flat wagon's supporting structure established that its strength is ensured.
A special feature of the technical advancement is that it does not require intervening in the basic concept of a flat wagon's supporting structure since the side walls are removable.
The scope of practical application of the research results is railroad transport. The practical use of the findings is subject to the absence of a natural degree of freedom of the side wall frame.
The results of this study will contribute to improving the efficiency of railroad transport operation, including international traffic. The results could also prove useful for designing modern car structures with improved technical and operational characteristics
References
- Dizo, J., Blatnicky, M. (2019). Evaluation of Vibrational Properties of a Three-wheeled Vehicle in Terms of Comfort. Manufacturing Technology, 19 (2), 197–203. https://doi.org/10.21062/ujep/269.2019/a/1213-2489/mt/19/2/197
- Steišūnas, S., Dižo, J., Bureika, G., Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370
- Stoilov, V., Slavchev, S., Maznichki, V., Purgic, S. (2023). Method for Theoretical Assessment of Safety against Derailment of New Freight Wagons. Applied Sciences, 13 (23), 12698. https://doi.org/10.3390/app132312698
- Koshel, O., Sapronova, S., Kara, S. (2023). Revealing patterns in the stressed-strained state of load-bearing structures in special rolling stock to further improve them. Eastern-European Journal of Enterprise Technologies, 4 (7 (124)), 30–42. https://doi.org/10.15587/1729-4061.2023.285894
- Čižiūnienė, K., Matijošius, J., Sokolovskij, E., Balevičiūtė, J. (2024). Assessment of Implementing Green Logistics Principles in Railway Transport: The Case of Lithuania. Sustainability, 16 (7), 2716. https://doi.org/10.3390/su16072716
- Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. https://doi.org/10.15587/1729-4061.2022.266855
- Silva, R., Ribeiro, D., Bragança, C., Costa, C., Arêde, A., Calçada, R. (2021). Model Updating of a Freight Wagon Based on Dynamic Tests under Different Loading Scenarios. Applied Sciences, 11 (22), 10691. https://doi.org/10.3390/app112210691
- Fedosov-Nikonov, D. V., Sulym, A. O., Ilchyshyn, V. V., Safronov, O. M., Kelrikh, M. B. (2020). Study of strength characteristics of the long wheelbase flat cars. IOP Conference Series: Materials Science and Engineering, 985 (1), 012029. https://doi.org/10.1088/1757-899x/985/1/012029
- Sulym, A., Orlov, O. (2022). Experimental studies of the strength of a long base flat wagons by carrying out endurance cyclic fatigue tests. Collection of Scientific Works of the State University of Infrastructure and Technologies Series “Transport Systems and Technologies,” 1 (40), 139–148. https://doi.org/10.32703/2617-9040-2022-40-12
- Gerlici, J., Lovska, A., Kozáková, K. (2025). Research into the Longitudinal Loading of an Improved Load-Bearing Structure of a Flat Car for Container Transportation. Designs, 9 (1), 12. https://doi.org/10.3390/designs9010012
- Šťastniak, P., Kurčík, P., Pavlík, A. (2018). Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences, 235, 00030. https://doi.org/10.1051/matecconf/201823500030
- Wiesław, K., Tadeusz, N., Michał, S. (2016). Innovative Project of Prototype Railway Wagon and Intermodal Transport System. Transportation Research Procedia, 14, 615–624. https://doi.org/10.1016/j.trpro.2016.05.307
- Lovska, A., Nerubatskyi, V., Plakhtii, O., Myamlin, S. (2024). Situational adaptation of the model 13-7024 flat car for transporting strategic cargo. Eastern-European Journal of Enterprise Technologies, 2 (7 (128)), 38–46. https://doi.org/10.15587/1729-4061.2024.299537
- Gerlici, J., Lovska, A., Pavliuchenkov, M. (2024). Study of the Dynamics and Strength of the Detachable Module for Long Cargoes under Asymmetric Loading Diagrams. Applied Sciences, 14 (8), 3211. https://doi.org/10.3390/app14083211
- Gerlici, J., Lovska, A., Vatulia, G., Pavliuchenkov, M., Kravchenko, O., Solčanský, S. (2023). Situational Adaptation of the Open Wagon Body to Container Transportation. Applied Sciences, 13 (15), 8605. https://doi.org/10.3390/app13158605
- Bohach, I. V., Krakovetskyi, O. Yu., Krylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
- Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108. Available at: https://mmf.dnu.dp.ua/wp-content/uploads/2020/01/mathcad_sayt.pdf
- Dižo, J., Blatnický, M., Harušinec, J., Suchánek, A. (2022). Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model. Symmetry, 14 (3), 536. https://doi.org/10.3390/sym14030536
- Soukup, J., Skočilas, J., Skočilasová, B., Dižo, J. (2017). Vertical Vibration of Two Axle Railway Vehicle. Procedia Engineering, 177, 25–32. https://doi.org/10.1016/j.proeng.2017.02.178
- Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Ravlyuk, V., Harusinec, J. (2023). Studying the load of composite brake pads under high-temperature impact from the rolling surface of wheels. EUREKA: Physics and Engineering, 4, 155–167. https://doi.org/10.21303/2461-4262.2023.002994
- Caban, J., Nieoczym, A., Gardyński, L. (2021). Strength analysis of a container semi-truck frame. Engineering Failure Analysis, 127, 105487. https://doi.org/10.1016/j.engfailanal.2021.105487
- Rudenko, V. M. (2021). Matematychna statystyka. Kyiv: Tsentr uchbovoi literatury, 304.
- Golovanevskiy, V., Kondratiev, A. (2021). Elastic Properties of Steel-Cord Rubber Conveyor Belt. Experimental Techniques, 45 (2), 217–226. https://doi.org/10.1007/s40799-021-00439-3
- Zaripov, R., Gavrilovs, P. (2021). Mechanical connection of metal structures in wagon buildings. 20th International Scientific Conference Engineering for Rural Development Proceedings, 20. https://doi.org/10.22616/erdev.2021.20.tf129
- Lovska, A., Gerlici, J., Dižo, J., Ishchuk, V. (2023). The Strength of Rail Vehicles Transported by a Ferry Considering the Influence of Sea Waves on Its Hull. Sensors, 24 (1), 183. https://doi.org/10.3390/s24010183
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alyona Lovska, Andrii Okorokov, Arsen Muradian, Valentyna Romakh, Tetiana Bolvanovska

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





