Reconstructing missing global positioning data with zero-shot large language models

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.335592

Keywords:

large language models, missing values, neural networks, imputation, prompt tuning

Abstract

This study focuses on the reconstruction of missing GPS trajectory data. The principal issue relates to restoring geospatial coordinates in the absence of large volumes of labeled data and under conditions where conventional spatial-temporal models demonstrate limited generalization capabilities.

This paper proposes a large language model-based approach to address the reconstruction task without requiring prior training on specialized datasets. To reduce dependence on domain-specific features, the focus was on optimizing data preprocessing and constructing effective prompts. Three coordinate representations have been explored: original degree-based values (using the VPAIR dataset), the Earth-Centered, Earth-Fixed (ECEF) system, and ECEF coordinates shifted relative to the starting point of the trajectory.

Experimental results show that using centered ECEF coordinates reduces the mean absolute error (MAE) by 51–59% for both latitude and longitude compared to other representations. Conversion to the ECEF system also demonstrates selective advantages in latitude reconstruction. To mitigate the instability of autoregressive prediction, a multi-iteration reconstruction strategy with result aggregation has been implemented. The open-source model LLaMA 3.2 achieved the highest accuracy (MAE: 36.57 for latitude and 52.14 for longitude), outperforming both other open models and the commercial GPT-4o.

The proposed approach can be considered a viable post-processing tool, particularly in missions involving unmanned aerial vehicles or other mobile platforms where part of the GPS data has been lost during acquisition

Author Biographies

Roman Ilechko, Lviv Polytechnic National University

PhD student

Department of Automated Control Systems

Orest Borovyi, Lviv Polytechnic National University

PhD student

Department of Automated Control Systems

Kyrylo Yemets, Lviv Polytechnic National University

PhD student

Department of Artificial Intelligence Systems

Yurii Tsymbal, Lviv Polytechnic National University

PhD, Associate Professor

Department of Automated Control Systems

References

  1. Chang, Y., Cheng, Y., Manzoor, U., Murray, J. (2023). A review of UAV autonomous navigation in GPS-denied environments. Robotics and Autonomous Systems, 170, 104533. https://doi.org/10.1016/j.robot.2023.104533
  2. Khan, S. Z., Mohsin, M., Iqbal, W. (2021). On GPS spoofing of aerial platforms: a review of threats, challenges, methodologies, and future research directions. PeerJ Computer Science, 7, e507. https://doi.org/10.7717/peerj-cs.507
  3. Gao, Q., Molloy, J., Axhausen, K. W. (2021). Trip Purpose Imputation Using GPS Trajectories with Machine Learning. ISPRS International Journal of Geo-Information, 10 (11), 775. https://doi.org/10.3390/ijgi10110775
  4. Zhang, S., Gong, L., Zeng, Q., Li, W., Xiao, F., Lei, J. (2021). Imputation of GPS Coordinate Time Series Using missForest. Remote Sensing, 13 (12), 2312. https://doi.org/10.3390/rs13122312
  5. Liu, H., Li, L. (2022). Missing Data Imputation in GNSS Monitoring Time Series Using Temporal and Spatial Hankel Matrix Factorization. Remote Sensing, 14 (6), 1500. https://doi.org/10.3390/rs14061500
  6. Floridi, L., Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds and Machines, 30 (4), 681–694. https://doi.org/10.1007/s11023-020-09548-1
  7. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L. et al. (2023). GPT 4 Technical Report. arXiv. https://doi.org/10.48550/arXiv.2303.08774
  8. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.‑A., Lacroix, T. et al. (2023). LLaMA: Open and Efficient Foundation Language Models. arXiv. https://doi.org/10.48550/arXiv.2302.13971
  9. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y. et al. (2023). LlaMA 2: Open foundation and fine‑tuned chat models. arXiv. https://doi.org/10.48550/arXiv.2307.09288
  10. Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al‑Dahle, A. et al. (2024). The Llama 3 herd of models. arXiv. https://doi.org/10.48550/arXiv.2407.21783
  11. Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L. et al. (2024). Gemma 2: Improving open language models at a practical size. arXiv. https://doi.org/10.48550/arXiv.2408.00118
  12. Gruver, N., Finzi, M., Qiu, S., Wilson, A. G. (2023). Large language models are zero‑shot time series forecasters. NeurIPS 36, 19622–19635. https://doi.org/10.48550/arXiv.2310.07820
  13. Gu, Y., Han, X., Liu, Z., Huang, M. (2022). PPT: Pre-trained Prompt Tuning for Few-shot Learning. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin: Association for Computational Linguistics, 8410–8423. https://doi.org/10.18653/v1/2022.acl-long.576
  14. Tsmots, I., Teslyuk, V., Opotyak, Y., Rabyk, V. (2023). Intelligent motion control system for the mobile robotic platform. 7th International Conference on Computational Linguistics and Intelligent Systems. Kharkiv: CEUR Workshop Proceedings. Available at: https://ceur-ws.org/Vol-3403/paper42.pdf
  15. Wang, Y., Feng, Z., Zhang, H., Gao, Y., Lei, J., Sun, L. et al. (2024). Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied Scenarios. Proceedings of the AAAI Conference on Artificial Intelligence, 38 (9), 10386–10394. https://doi.org/10.1609/aaai.v38i9.28906
  16. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38 (18), 2895–2907. https://doi.org/10.1016/j.atmosenv.2004.02.026
  17. van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45 (3), 1–67. https://doi.org/10.18637/jss.v045.i03
  18. Oliver, M. A., Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56–69. https://doi.org/10.1016/j.catena.2013.09.006
  19. Murti, D. M. P., Pujianto, U., Wibawa, A. P., Akbar, M. I. (2019). K-Nearest Neighbor (K-NN) based Missing Data Imputation. 2019 5th International Conference on Science in Information Technology. Yogyakarta: IEEE, 83–88. https://doi.org/10.1109/icsitech46713.2019.8987530
  20. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y. (2018). Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 8 (1). https://doi.org/10.1038/s41598-018-24271-9
  21. Asadi, R., Regan, A. C. (2019). A convolution recurrent autoencoder for spatio‑temporal missing data imputation. arXiv. https://doi.org/10.48550/arXiv.1904.12413
  22. Nag, P., Sun, Y., Reich, B. J. (2023). Spatio-temporal DeepKriging for interpolation and probabilistic forecasting. Spatial Statistics, 57, 100773. https://doi.org/10.1016/j.spasta.2023.100773
  23. You, J., Ma, X., Ding, D. Y., Kochenderfer, M., Leskovec, J. (2020). Handling missing data with graph representation learning. NIPS'20, 19075–19087. https://doi.org/10.48550/arXiv.2010.16418
  24. Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y. (2015). Attention‑based models for speech recognition. NIPS'15, 577–585. https://doi.org/10.48550/arXiv.1506.07503
  25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gómez, A. N. et al. (2017). Attention is all you need. NIPS'17, 6000–6010. https://doi.org/10.48550/arXiv.1706.03762
  26. Schleiss, M., Rouatbi, F., Cremers, D. (2022). VPAIR – Aerial visual place recognition and localization in large‐scale outdoor environments. arXiv. https://doi.org/10.48550/arXiv.2205.11567
  27. Enge, P. K. (1994). The Global Positioning System: Signals, measurements, and performance. International Journal of Wireless Information Networks, 1 (2), 83–105. https://doi.org/10.1007/bf02106512
Reconstructing missing global positioning data with zero-shot large language models

Downloads

Published

2025-08-29

How to Cite

Ilechko, R., Borovyi, O., Yemets, K., & Tsymbal, Y. (2025). Reconstructing missing global positioning data with zero-shot large language models. Eastern-European Journal of Enterprise Technologies, 4(9 (136), 6–18. https://doi.org/10.15587/1729-4061.2025.335592

Issue

Section

Information and controlling system