Rescue equipment completing problem and technologies for its solution

Authors

  • Василий Николаевич Крышталь Cherkassy Institute of Fire Safety named after Heroes of Chornobyl of National Uni¬versity of Civil Defense of Ukraine Str. Onoprienko 8, Cherkasy, Ukraine, 18000, Ukraine https://orcid.org/0000-0002-1430-7404
  • Виталий Евгеневич Снитюк Taras Shevchenko National University of Kyiv Str. Lomonosov 81, Kyiv, Ukraine, 03022, Ukraine https://orcid.org/0000-0002-9954-8767

DOI:

https://doi.org/10.15587/1729-4061.2014.33647

Keywords:

rescue equipment, completing, optimization, criterion, information base

Abstract

The paper deals with the rescue equipment completing problem and aspects of its solution. In recent years, this problem has become of particular importance and the necessity of its solution is underlined by resource-fiscal deficit. The analysis has shown a certain similarity of the considered problem with the bin packing problem. However, in contrast, we deal with the multicriterion discrete optimization problem.

A set of the structure, functioning and development models, accompanying the obtained solution at its lifecycle stages was elaborated. These models allow to construct the area of potential solutions and, most importantly, provide the ability to change the equipment range over time, ensuring its adaptive properties.

Four main completing assessment criteria: functionality, performance, power and price were indicated. The objective function was built based on the additive convolution to determine the optimal variant of rescue equipment completing. Since this problem is discrete optimization problem and the number of possible completing variants is significant, it was proposed to solve it using the composition of evolutionary methods, the analytic hierarchy process and fuzzy set theory, for which data pre-preparation procedures were developed. The structure of the knowledge base, which is the information basis of the decision support processes was developed.

Author Biographies

Василий Николаевич Крышталь, Cherkassy Institute of Fire Safety named after Heroes of Chornobyl of National Uni¬versity of Civil Defense of Ukraine Str. Onoprienko 8, Cherkasy, Ukraine, 18000

Senior Lecturer

The department fire tactics and rescue operations

Виталий Евгеневич Снитюк, Taras Shevchenko National University of Kyiv Str. Lomonosov 81, Kyiv, Ukraine, 03022

Professor, Doctor of technical sciences, head of the department

The department of intellectual information systems 

References

  1. Snytyuk, V., Kucher, P. (2014). Problem and mathematical models for rescue technics acquisi­tion. International Journal “Information Theories and Applications”, 21 (1), 60–64.
  2. Zadeh, L. A. (1994). Fuzzy logic, neural network and soft computing. Communications of the ACM, 37 (3), 77–84.
  3. Snytyuk, V., Dghulay, O. (2007). Evolutionary technique of shorter route determination of fire brigade following to fire place with the optimized space of search. Information Technologies and Knowledge, 1 (4), 325–332.
  4. 4. Snytyuk, V. E., Dghulay, A. N., Bychenko, A. A. (2008). Evolyuzionnie tekhnologii prinyatiya resheniy pri pozharotushenii. Kiev: Maklaut, 268.
  5. Zemlyanskiy, О. M. (2012). Modeli ta evolyuziyni metodi optimizatsii struktiri system pozhezhnogo monitoringu budivel I sporud. Kiev, KNUBA, 22.
  6. Zemlyanskiy, O. M. (2014). Informaziyna tekhnologiya prognosuvannya konzen­trazii nebezpechnoi rechovini pri avariynomu vikidi v umovakh neviznachenosti. Cherkasy, CHDTU, 20.
  7. Snytyuk, V. Е., Мyroshnyk, О. N. (2014). Modelirovanie i prognozirovanie prozessov na rynke nedvizhimosti. Cherkasy: “Chabanenko”, 416.
  8. Lodi, A., Martello, S., Vigo, D. (2002). Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123 (1-3), 379–396. doi: 10.1016/s0166-218x(01)00347-x
  9. Silvano, M., Toth, P. (1990). Knapsack problems. Chichester, UK: John Wiley and Sons, 221.
  10. Kucher, P., Snytyuk, V. (2009). Formalizaziya zadachi komplektuvannya I evolyuziyni aspekti ee resheniya. Isskustvenniy intellekt, 4, 268–273.
  11. Volkovitch, V. L., Voloshyn, А. F. (1993). Modeli i metodi optimizazii nadezhnosti slognikh system. К.: Nauk. dumka, 312.
  12. Chernoruzkiy, I. G. (2005) Medodi prinyatiya resheniy. SPb.: BHV, 416.
  13. Voloshyn, O. F., Maschenko, S. О. (2006). Teoriya prinyatiya resheniy. Кiev: Kievskiy universitet, 304.
  14. Michalevitch, V. С., Volkovitch, V. L. (1982). Vichislitelnie metodi issledovaniya i proektirovaniya slognikh system. Мoscow: Nauka, 286.
  15. Holland, J. H. (1994). Adaptation in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence. London: Bradford book edition, 211.
  16. Michalewitcz, Z. (1996). Genetic Algorithms+Data Structures=Evolution Programs. Springer Verlag, Berlin, Heidelberg, New-York, 387. doi: 10.1007/978-3-662-03315-9
  17. Rechenberg, I. (1994). Evolutionsstrategie “94”. Stuttgart-Bad GannStatt: Frommann Halzboog, 434.
  18. Timchenko, А. А., Rodionov, A. A. (1991). Osnovi informatiki sistemnogo proektirovaniya objektov novoy techniki. Кiev: Naukova dumka, 231.
  19. Larichev, О. I. (2003). Teoriya i metodi prinyatiya resheniy. Мoscow: Logos, 392.
  20. Saati, Т., Kerns, K. (1991). Analiticheskoe planirovanie organizazii sistem. Мoscow: Radio i svyaz, 224.

Published

2014-12-19

How to Cite

Крышталь, В. Н., & Снитюк, В. Е. (2014). Rescue equipment completing problem and technologies for its solution. Eastern-European Journal of Enterprise Technologies, 6(3(72), 35–41. https://doi.org/10.15587/1729-4061.2014.33647

Issue

Section

Control processes