Characteristic defects of extrusioned polymeric profiles and methods of their elimination

Authors

  • Марія Анатоліївна Романченко National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7351-7348
  • Олександр Леонідович Сокольський National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7929-3576
  • Ігор Олегович Мікульонок National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-8268-7229
  • Ігор Анатолійович Горбань National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-8232-1980

DOI:

https://doi.org/10.15587/1729-4061.2014.33648

Keywords:

extrusion, coextrusion, technology, formation, polyvinylchloride, profiles, defects, calibrator, adhesion, interlayer interaction

Abstract

Products made of polymeric materials are becoming more common. At the same time, requirements for quality, accuracy of shape and sizes of products are increasing. Meeting the demand for domestic plastic products is impossible without improving the design and process parameters of equipment and polymer processing procedures. The aim of the research, described in the paper, is an analysis of the main factors affecting the quality of coextrusion formation of multilayer polymeric products and methods to eliminate defects. Production of pipes and gutters is carried out using coextrusion formation with subsequent calibration. The main defects that may occur in the polymeric profile production are "wave" defect, underfills, streaks, scratches, length distortion of the profile (saber), violation of adhesive interaction of layers and phase distribution boundary. The analysis of specific defects, their features and causes was performed. Most appropriate practical ways to eliminate defects using correction of process and design parameters were proposed. Correction of process parameters includes reducing or increasing the worm rotation rate, varying the worm temperature, temperature at the outlet of the working cylinder, temperature control in the first zones of the working cylinder (in the raw charging zone), increasing or decreasing pressure in the head. Design parameters subject to correction include the channel depth in the dosage area and compression zone length, head channel profile, length of calibration and cooling zones.

Author Biographies

Марія Анатоліївна Романченко, National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056

graduate student

The department of chemical, polymer and silicate engineering

Олександр Леонідович Сокольський, National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056

Associate professor, Candidate of technical science

The department of chemical, polymer and silicate engineering 

Ігор Олегович Мікульонок, National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056

Professor, Doctor of technical sciences, honored Inventor of Ukraine

The department of chemical, polymer and silicate engineering 

Ігор Анатолійович Горбань, National Technical University of Ukraine «Kiev Polytechnic Institute» Pobedy avenue 37, Kiev, Ukraine, 03056

The department of chemical, polymer and silicate engineering 

References

  1. Mikulionok, I. O. (2009). Obladnannya i procesy pererobky termoplastychnyh materialiv z vykorystannyam vtorynnoi syrovyny. Kiev, Politechnika, 265.
  2. Basov, N. I. (1991). Raschet i konstruirovanie formuyuchshego instrumenta dlya izgotovleniya izdeliy iz polimermyh materialov. Moskov, Khimiya, 352.
  3. Constantin, D. (1984). Linear-low-density polyethylene melt rheology: Extensibility and extrusion defects. Polymer Engineering & Science, 24 (4), 268–274. doi: 10.1002/pen.760240407
  4. Noriega, M. E., Del Pilar, Rauwendaal, C. (2010). Troubleshooting the Extrusion Process 2E: A Systematic Approach to Solving Plastic Extrusion Problems. Carl Hanser Verlag GmbH & Co, 196.
  5. Rauwendaal, C. (2014). Polymer Extrusion; 5 edition. Carl Hanser Verlag GmbH & Co, 934.
  6. Anastasiadis, S. H., Hatzikiriakos, S. G. (1998). The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip. Journal of Rheology, 42 (4), 795–812. doi: 10.1122/1.550909
  7. Piau, J.-M., Nigen, S., El Kissi, N. (2000). Effect of die entrance filtering on mitigation of upstream instability during extrusion of polymer melts. Journal of Non-Newtonian Fluid Mechanics, 91 (1), 37–57. doi: 10.1016/s0377-0257(99)00083-x
  8. Sokolskiy, A. L. (2014). Wplyv konstruktyvnyh i tehnologichnyh parametriv procesu formuvannya termoplastiv na yakist extrudovanoi produkcii. Visnyk NTUU «KPI», 40–44.
  9. Yang, X, Wang, S-Q, Chai, C. (1998). Extrudate swell behavior of polyethylene: capillary flow, wall slip, entry/exit effects and low-temperature anomalies. Journal of Rheology, 42 (5), 1075–1094. doi: 10.1122/1.550919
  10. Zhou, H., Kassim, A., Ranganath, S. (1998). A fast algorithm for detecting die extrusion defects in IC packages. Machine Vision and Applications, 11, 37–41. doi: 10.1007/s001380050088
  11. Denn, M. (2001). Extrusion instabilities and wall slip. Annual Reviews Of Fluid Mechanics, 33, 265–287.
  12. Hatzikiriakos, S. G. (2012). Wall slip of molten polymers. Progress in Polymer Science, 37 (4), 624–643. doi: 10.1016/j.progpolymsci.2011.09.004
  13. Kim, V. S. (2005). Theory and practice of polymer extrusion. Koloss, 568.
  14. Krychshanovskiy, V. K., Kerber, M. L., Burlov, V. V., Panimatchenko A. D. (2004). Proizvodstvo izdeliy iz polimernyh materialov. Sankt-Petersburg, Professia, 464.
  15. Tadmor, Z., Gogos, C. (2006). Principles of Polymer Processing. Wiley-Interscience, 961.
  16. Wang, Y.-T. (2006). Modelling and Control for a Thermal Вarrel in Plastic Molding Process. Tamkang Journal of Science and Engineering, 9 (2), 129–140.
  17. Sakharov, A. S., Kolosov, A. E., Sivetskii, V. I., Sokolskii, A. L. (2013). Modeling of Polymer Melting Processes in Screw Extruder Channels. Chemical and Petroleum Engineering, 49 (5-6), 357–363. doi: 10.1007/s10556-013-9755-z
  18. Tran-, T., Phan-Thien, N. (1988). Three-dimensional study of extrusion processes by boundary element method 2. Extrusion of a viscoelastic fluid Rheologica Acta, 27 (6), 639–648. doi: 10.1007/bf01337460

Published

2014-12-15

How to Cite

Романченко, М. А., Сокольський, О. Л., Мікульонок, І. О., & Горбань, І. А. (2014). Characteristic defects of extrusioned polymeric profiles and methods of their elimination. Eastern-European Journal of Enterprise Technologies, 6(11(72), 30–34. https://doi.org/10.15587/1729-4061.2014.33648

Issue

Section

Materials Science