Determining the effectiveness of using a composition of biosurfactants in technologies for antimicrobial treatment of fleece materials for military and civil purposes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.337901

Keywords:

biosurfactant, fleece products, antimicrobial treatment technologies, military clothing, antimicrobial finishing

Abstract

This study’s object is the processes of antimicrobial treatment of fleece materials for military-civilian purposes. The issue addressed is the high vulnerability of fleece materials to bacterial and fungal contamination in intensive use. This reduces their hygienic characteristics, durability, and safety.

The effectiveness of using the composition of biological surface-active substances (biosurfactants) with a concentration of 2.5 g/l has been carried out for the technologies of antimicrobial treatment of fleece materials for military-civilian purposes. The effect of biosurfactant composition on the preservation of antimicrobial activity against a wide range of microorganisms (Acinetobacter spp., Enterococcus faecalis, Micrococcus spp., Staphylococcus epidermidis, Proteus vulgaris, Aspergillus) was studied.

The results indicate a decrease in the bacterial load to the level of 101–102 CFU/ml and a significant reduction or complete elimination of fungal contamination (up to 103 CFU/ml). The findings are attributed to the ability of biosurfactant to destroy cellular membranes of microorganisms, which provides increased biocidal resistance of the material.

A feature of the results is the achievement of a pronounced antimicrobial effect while maintaining the physical and mechanical properties of the fabric. After treatment, a slight increase in bending stiffness (10–20%) was observed, the wrinkle resistance coefficient was 44–72%. This ensures the proper level of comfort and functionality of the products.

The practical significance relates to the possibility of implementing the designed technological solutions in the production of military and civilian clothing, which is operated under conditions of increased requirements for hygiene, thermal insulation, and durability, enabling consumer protection from microbial contamination

Author Biographies

Olga Paraska, Khmelnytskyi National University

Doctor of Technical Science, Professor

Department Chemistry and Chemical Engineering

Vita Nehorui, Khmelnytskyi National University

PhD Student

Department Chemistry and Chemical Engineering

Andriy Gorban, University Petro Mohyla Black Sea National University

Doctor of Medical Science

Department Hygiene, Social Medicine, Public Health and Medical Informatics

Tomasz Buratowski, AGH University of Science and Technology in Krakow

Doctor of Technical Science, Professor

Department Robotics and Mechatronics

References

  1. Bibi, A., Afza, G., Afzal, Z., Farid, M., Sumrra, S. H., Hanif, M. A., Kolita Kama Jinadasa, B. K., Zubair, M. (2024). Synthetic vs. natural antimicrobial agents for safer textiles: a comparative review. RSC Advances, 14 (42), 30688–30706. https://doi.org/10.1039/d4ra04519j
  2. Sathianarayanan, M. P., Bhat, N. V., Kokate, S. S., Walunj, V. E. (2010). Antibacterial finish for cotton fabric from herbal products. Indian Journal of Fibre & Textile Research, 35 (1), 50–58. Available at: https://nopr.niscpr.res.in/bitstream/123456789/7662/3/IJFTR%2035(1)%2050-58.pdf
  3. Paraska, O., Synyuk, O., Radek, N., Zolotenko, E., Mykhaylovskiy, Y. (2023). Usage of biosurfactants as environmental friendly detergents for textile products cleaning. Fibres and Textiles, 30 (5), 42–51. https://doi.org/10.15240/tul/008/2023-5-005
  4. Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz-Sigl, E., Hasmann, A., Guebitz, G. M., Gedanken, A. (2008). Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics. ACS Applied Materials & Interfaces, 1 (2), 361–366. https://doi.org/10.1021/am8000743
  5. Wang, L., Hu, C., Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/ijn.s121956
  6. Puyol McKenna, P., Naughton, P. J., Dooley, J. S. G., Ternan, N. G., Lemoine, P., Banat, I. M. (2024). Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals, 17 (1), 138. https://doi.org/10.3390/ph17010138
  7. Hossain, M. M., Islam, T., Jalil, M. A., Rakibuzzaman, S. M., Surid, S. M., Zabed, M. R. I. et al. (2024). Advancements of eco‐friendly natural antimicrobial agents and their transformative role in sustainable textiles. SPE Polymers, 5 (3), 241–276. Portico. https://doi.org/10.1002/pls2.10135
  8. Materials Market Report 2024 (2024). Textile Exchange. Available at: https://textileexchange.org/knowledge-center/reports/materials-market-report-2024/ Last accessed: 24.06.2025
  9. Flis. Tekstyl-Kontakt. Available at: https://tk.ua/ua/catalog/vse-tkani/flis.html?srsltid=AfmBOor9EjKcvjQ3iMTs9GSucg-TlFAE5Pd2qrG6-imWOUjuc0JTt8rw Last accessed: 24.06.2025
  10. TK-Style – shveina fabryka. Tekstyl-Kontakt. Available at: https://tk-company.com.ua/uk/tk-style/ Last accessed: 24.06.2025
  11. Kamuflovani kostiumy z flisu. Camotec.ua. Available at: https://camotec.ua/kostyumi-c118/ Last accessed: 24.06.2025
  12. Tkanyna flis optom. Grandtextile. Available at: https://grandtextile.com.ua/ua/opt/flis/ Last accessed: 24.06.2025
  13. Flisovi tkanyny. Van Tex. Available at: https://vantex.com.ua/ua/g107870695-flis/ Last accessed: 24.06.2025
  14. Granados, A., Pleixats, R., Vallribera, A. (2021). Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules, 26 (10), 3008. https://doi.org/10.3390/molecules26103008
  15. Ali, M. A.-S., Abdel-Rahim, E. A.-M., Mahmoud, A. A.-A., Mohamed, S. E. (2024). Innovative textiles treated with TiO2-AgNPs with succinic acid as a cross-linking agent for medical uses. Scientific Reports, 14 (1). https://doi.org/10.1038/s41598-024-56653-7
  16. Schneider, G., Vieira, L. G., Carvalho, H. E. F. de, Sousa, Á. F. L. de, Watanabe, E., Andrade, D. de, Silveira, R. C. de C. P. (2023). Textiles impregnated with antimicrobial substances in healthcare services: systematic review. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1130829
  17. Paraska, O. A., Rak, T. S., Karvan, S. A. (2019). Pat. No. 133668 UA. Kompozytsiia ekolohichno bezpechnykh poverkhnevo-aktyvnykh rechovyn dlia akvachyshchennia tekstylnykh vyrobiv. MPK D06M 11/00. No. a201811227; declareted: 15.11.2018; published: 25.04.2019, Bul. No. 8, 4.
  18. Ashar, A., Bhutta, Z. A., Shoaib, M., Alharbi, N. K., Fakhar-e-Alam, M., Atif, M. et al. (2023). Cotton fabric loaded with ZnO nanoflowers as a photocatalytic reactor with promising antibacterial activity against pathogenic E. coli. Arabian Journal of Chemistry, 16 (9), 105084. https://doi.org/10.1016/j.arabjc.2023.105084
  19. Morais, D., Guedes, R., Lopes, M. (2016). Antimicrobial Approaches for Textiles: From Research to Market. Materials, 9 (6), 498. https://doi.org/10.3390/ma9060498
  20. Giedraitienė, A., Ružauskas, M., Šiugždinienė, R., Tučkutė, S., Grigonis, K., & Milčius, D. (2024). ZnO Nanoparticles Enhance the Antimicrobial Properties of Two-Sided-Coated Cotton Textile. Nanomaterials, 14 (15), 1264. https://doi.org/10.3390/nano14151264
  21. Falk, N. A. (2019). Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. Journal of Surfactants and Detergents, 22 (5), 1119–1127. https://doi.org/10.1002/jsde.12293
  22. Zhou, C., Wang, Y. (2020). Structure–activity relationship of cationic surfactants as antimicrobial agents. Current Opinion in Colloid & Interface Science, 45, 28–43. https://doi.org/10.1016/j.cocis.2019.11.009
  23. Lourenço, M., Duarte, N., Ribeiro, I. A. C. (2024). Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals, 17 (9), 1239. https://doi.org/10.3390/ph17091239
  24. Antonioli Júnior, R., Poloni, J. de F., Pinto, É. S. M., Dorn, M. (2022). Interdisciplinary Overview of Lipopeptide and Protein-Containing Biosurfactants. Genes, 14 (1), 76. https://doi.org/10.3390/genes14010076
  25. Naebe, M., Haque, A. N. M. A., Haji, A. (2022). Plasma-Assisted Antimicrobial Finishing of Textiles: A Review. Engineering, 12, 145–163. https://doi.org/10.1016/j.eng.2021.01.011
  26. Espanhol-Soares, M., Costa, L., Silva, M. R. A., Soares Silva, F., Ribeiro, L. M. S., Gimenes, R. (2020). Super-hydrophobic coatings on cotton fabrics using sol-gel technique by spray. Journal of Sol-Gel Science and Technology, 95 (1), 22–33. https://doi.org/10.1007/s10971-020-05307-x
  27. Orasugh, J. T., Temane, L. T., Kesavan Pillai, S., Ray, S. S. (2025). Advancements in Antimicrobial Textiles: Fabrication, Mechanisms of Action, and Applications. ACS Omega, 10 (13), 12772–12816. https://doi.org/10.1021/acsomega.4c11356
Determining the effectiveness of using a composition of biosurfactants in technologies for antimicrobial treatment of fleece materials for military and civil purposes

Downloads

Published

2025-08-26

How to Cite

Paraska, O., Nehorui, V., Gorban, A., & Buratowski, T. (2025). Determining the effectiveness of using a composition of biosurfactants in technologies for antimicrobial treatment of fleece materials for military and civil purposes. Eastern-European Journal of Enterprise Technologies, 4(6 (136), 23–34. https://doi.org/10.15587/1729-4061.2025.337901

Issue

Section

Technology organic and inorganic substances