Implementation of term frequency-inverse document frequency (TF-IDF) and Word2Vec in traditional medicine recommendation system based on content-based filtering

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.338128

Keywords:

content-based filtering, dimension, feature extraction, recommendation system, semantic relationship, term frequency-invers document frequency (TF-IDF), traditional medicine, window size, Word2Vec, word weight

Abstract

According to World Health Organization (WHO), traditional medicine is the culmination of all the knowledge, abilities, and practices derived from the theories, beliefs, and experiences that are unique to various cultures and that are used to maintain health as well as to prevent, diagnose, treat, or improve physical and mental illness. recently classified traditional herbal therapy as comprised of medicinal techniques that have existed, frequently for hundreds of years, prior to the establishment of modern medicine. The lack of easily accessible information regarding the description and efficiency of traditional medicine makes it difficult for users to understand the benefits of each type of traditional medicine. Because of this, a recommendation system is needed that aims to facilitate users in finding traditional medicine that suit their preferences. This research proposes a traditional medicine recommendation system with the content-based filtering method using a combination of term frequency-invers document frequency and Word2Vec feature extraction. This method analyzes the traditional medicine description text and recommends based on word weights and semantic relationships between words. Results show optimal performance at dimensions 50–200 and window sizes 9–15 for the combination of term frequency-invers document frequency and Word2Vec, while term frequency-invers document frequency alone reaches 80% of accuracy and Word2Vec has lower performance (4–14%) across a wide range of parameter experiments. Based on optimal result above, this recommendation system can be applied to obtain information of traditional medicine that suitable with people needed by adjust the best model of dimensions and window size

Author Biographies

Rika Yunitarini, Trunojoyo University

Doctor of Informatics Engineering

Department of Informatics Engineering

Dwi Aqilah Pradita, Trunojoyo University

Bachelor of Informatics Engineering

Department of Informatics Engineering

Ernaning Widiaswanti, Trunojoyo University

Doctor of Industrial Engineering

Department of Industrial Engineering

References

  1. Che, C.-T., George, V., Ijinu, T. P., Pushpangadan, P., Andrae-Marobela, K. (2024). Traditional medicine. Pharmacognosy. Academic Press, 11–28. https://doi.org/10.1016/b978-0-443-18657-8.00037-2
  2. WHO traditional medicine strategy: 2014–2023 (2013). World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf Last accessed: 20.05.2025
  3. Bodeker, G., Graz, B.; Ryan, E. T., Hill, D. R., Solomon, T., Aronson, N. E., Endy, T. P. (Eds.). (2020). Traditional Medicine. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier, 194–199. https://doi.org/10.1016/b978-0-323-55512-8.00025-9
  4. Kamboj, V. P. (2000). Herbal medicine. Current Science, 78 (1), 35–39.
  5. Pal, S. K., Shukla, Y. (2003). Herbal medicine: Current status and the future. Asian Pacific Journal of Cancer Prevention, 4, 281–288. Available at: https://www.researchgate.net/profile/Sanjoy-Pal-2/publication/8914668_Herbal_medicine_Current_status_and_the_future/links/0c96051fd33d11991d000000/Herbal-medicine-Current-status-and-the-future.pdf
  6. WHO global report on traditional and complementary medicine 2019 (2019). Geneva: World Health Organization, 226. Available at: https://iris.who.int/bitstream/handle/10665/312342/9789241515436-eng.pdf?sequence=1
  7. Sianipar, E. A. (2021). The potential of Indonesian traditional herbal medicine as immunomodulatory agents: A review. International Journal of Pharmaceutical Sciences and Research, 12 (10), 5229–5237. https://doi.org/10.13040/IJPSR.0975-8232.12(10).5229-37
  8. Pradipta, I. S., Aprilio, K., Febriyanti, R. M., Ningsih, Y. F., Pratama, M. A. A., Indradi, R. B. et al. (2023). Traditional medicine users in a treated chronic disease population: a cross-sectional study in Indonesia. BMC Complementary Medicine and Therapies, 23 (1). https://doi.org/10.1186/s12906-023-03947-4
  9. Muharrami, L. K., Santoso, M., Fatmawati, S. (2024). Traditional Medicine Uses of Madurese Ethnic, Indonesia: Indigenous Knowledge “Jamu” in Relation with Medicinal Plants. Journal of Hunan University Natural Sciences, 51 (10). https://doi.org/10.55463/issn.1674-2974.51.10.2
  10. Yunitarini, R., Widiaswanti, E. (2024). Analysis and Design of Indonesian Traditional Medicine (Jamu) Information System by using Prototyping Model (Case Study: Madura Island). E3S Web of Conferences, 483, 03012. https://doi.org/10.1051/e3sconf/202448303012
  11. Vall, A., Dorfer, M., Eghbal-zadeh, H., Schedl, M., Burjorjee, K., Widmer, G. (2019). Feature-combination hybrid recommender systems for automated music playlist continuation. User Modeling and User-Adapted Interaction, 29 (2), 527–572. https://doi.org/10.1007/s11257-018-9215-8
  12. Widayanti, R., Chakim, M., Lukita, C., Rahardja, U., Lutfiani, N. (2023). Improving Recommender Systems using Hybrid Techniques of Collaborative Filtering and Content-Based Filtering. Journal of Applied Data Sciences, 4 (3), 289–302. https://doi.org/10.47738/jads.v4i3.115
  13. Van Balen, J., Goethals, B. (2021). High-dimensional Sparse Embeddings for Collaborative Filtering. Proceedings of the Web Conference 2021. Ljubljana, 575–581. https://doi.org/10.1145/3442381.3450054
  14. Gunarto, S. A., Honggara, E. S., Purwanto, D. D. (2023). Website Sistem Rekomendasi dengan Content Based Filtering pada Produk Perawatan Kulit. Jurnal Sistem Dan Teknologi Informasi, 11 (3), 399. https://doi.org/10.26418/justin.v11i3.59049
  15. Nastiti, P. (2019). Penerapan Metode Content Based Filtering Dalam Implementasi Sistem Rekomendasi Tanaman Pangan. Teknika, 8 (1), 1–10. https://doi.org/10.34148/teknika.v8i1.139
  16. Huda, A. A., Fajarudin, R., Hadinegoro, A. (2022). Sistem Rekomendasi Content-based Filtering Menggunakan TF-IDF Vector Similarity Untuk Rekomendasi Artikel Berita. Building of Informatics, Technology and Science, 4 (3), 1679–1686. https://doi.org/10.47065/bits.v4i3.2511
  17. Putri, M. W., Muchayan, A., Kamisutara, M. (2020). Sistem Rekomendasi Produk Pena Eksklusif Menggunakan Metode Content-Based Filtering dan TF-IDF. Journal of Information Technology and Computer Science, 5 (3), 229. https://doi.org/10.31328/jointecs.v5i3.1563
  18. Negara, E. S., Sulaiman, Andryani, R., Saksono, P. H., Widyanti, Y. (2023). Recommendation System with Content-Based Filtering in NFT Marketplace. Journal of Advances in Information Technology, 14 (3), 518–522. https://doi.org/10.12720/jait.14.3.518-522
  19. Nawangsari, R. P., Kusumaningrum, R., Wibowo, A. (2019). Word2Vec for Indonesian Sentiment Analysis towards Hotel Reviews: An Evaluation Study. Procedia Computer Science, 157, 360–366. https://doi.org/10.1016/j.procs.2019.08.178
  20. Khomsah, S. (2021). Sentiment Analysis on YouTube Comments Using Word2Vec and Random Forest. Telematika, 18 (1), 61–72. https://doi.org/10.31315/telematika.v18i1.4493
  21. Ramadhanti, N. R., Mariyah, S. (2019). Document Similarity Detection Using Indonesian Language Word2vec Model. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). Semarang: IEEE, 1–6. https://doi.org/10.1109/icicos48119.2019.8982432
  22. Cahyani, S. N., Saraswati, G. W. (2023). Implementation of support vector machine method in classifying school library books with combination of TF-IDF and WORD2VEC. Jurnal Teknik Informatika, 4 (6), 1555–1566. https://doi.org/10.52436/1.jutif.2023.4.6.1536
  23. Liang, M., Niu, T. (2022). Research on Text Classification Techniques Based on Improved TF-IDF Algorithm and LSTM Inputs. Procedia Computer Science, 208, 460–470. https://doi.org/10.1016/j.procs.2022.10.064
  24. Nurfalah, F., Asriyanik, Pambudi, A. (2022). Sistem Rekomendasi Event Online Menggunakan Metode Content Based Filtering. Elkom : Jurnal Elektronika Dan Komputer, 15 (2), 271–279. https://doi.org/10.51903/elkom.v15i2.736
  25. Irvandani, A., Auliasari, K., Primaswara Prasetya, R. (2020). Sistem Rekomendasi Pemilihan Fotografer dengan Metode Haversine dan TF-IDF di Malang Raya. Jurnal Mahasiswa Teknik Informatika, 4 (1), 137–146. https://doi.org/10.36040/jati.v4i1.2330
  26. Yutika, C. H., Adiwijaya, A., Faraby, S. A. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5 (2), 422. https://doi.org/10.30865/mib.v5i2.2845
Implementation of term frequency-inverse document frequency (TF-IDF) and Word2Vec in traditional medicine recommendation system based on content-based filtering

Downloads

Published

2025-08-29

How to Cite

Yunitarini, R., Pradita, D. A. ., & Widiaswanti, E. (2025). Implementation of term frequency-inverse document frequency (TF-IDF) and Word2Vec in traditional medicine recommendation system based on content-based filtering. Eastern-European Journal of Enterprise Technologies, 4(2 (136), 70–80. https://doi.org/10.15587/1729-4061.2025.338128