Development of a polymodel resource management complex for intelligent decision support systems
DOI:
https://doi.org/10.15587/1729-4061.2025.340387Keywords:
efficiency, reliability, decision-making, coordination, interaction, computational tasks, artificial intelligenceAbstract
The object of the study is intelligent decision support systems. The problem addressed in the research is to improve the accuracy of modeling the functioning process of intelligent decision support systems.
A polymodel complex for resource management of intelligent decision support systems has been developed. The originality of the study lies in:
– the comprehensive description of the functioning processes of intelligent decision support systems;
– the capability to model both an individual process occurring in intelligent decision support systems and to perform comprehensive modeling of the processes taking place within them;
– the establishment of conceptual dependencies in the functioning process of intelligent decision support systems. This makes it possible to describe the interaction of individual models at all stages of solving computational tasks;
– the description of coordination processes in hybrid intelligent decision support systems, which ensures an increase in the reliability of managerial decision-making;
– the modeling of processes for solving complex computational tasks in intelligent decision support systems through the conceptual description of the specified process;
– the coordination of computational processes in intelligent decision support systems, which leads to a reduction in the number of computational resources of the systems;
– the comprehensive resolution of conflicts through a set of corresponding mathematical models.
The proposed polymodel complex is advisable for use in solving the problem of managing intelligent decision support systems characterized by a high degree of complexity
References
- Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
- Wang, J., Neil, M., Fenton, N. (2020). A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Computers & Security, 89, 101659. https://doi.org/10.1016/j.cose.2019.101659
- Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta, A. F., Baldini, G. (2019). Risk-based automated assessment and testing for the cybersecurity certification and labelling of IoT devices. Computer Standards & Interfaces, 62, 64–83. https://doi.org/10.1016/j.csi.2018.08.003
- Henriques de Gusmão, A. P., Mendonça Silva, M., Poleto, T., Camara e Silva, L., Cabral Seixas Costa, A. P. (2018). Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory. International Journal of Information Management, 43, 248–260. https://doi.org/10.1016/j.ijinfomgt.2018.08.008
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. https://doi.org/10.1016/j.aci.2014.07.001
- Mohammad, A. (2020). Development of the concept of electronic government construction in the conditions of synergetic threats. Technology Audit and Production Reserves, 3 (2 (53)), 42–46. https://doi.org/10.15587/2706-5448.2020.207066
- Bodin, L. D., Gordon, L. A., Loeb, M. P., Wang, A. (2018). Cybersecurity insurance and risk-sharing. Journal of Accounting and Public Policy, 37 (6), 527–544. https://doi.org/10.1016/j.jaccpubpol.2018.10.004
- Cormier, A., Ng, C. (2020). Integrating cybersecurity in hazard and risk analyses. Journal of Loss Prevention in the Process Industries, 64, 104044. https://doi.org/10.1016/j.jlp.2020.104044
- Hoffmann, R., Napiórkowski, J., Protasowicki, T., Stanik, J. (2020). Risk based approach in scope of cybersecurity threats and requirements. Procedia Manufacturing, 44, 655–662. https://doi.org/10.1016/j.promfg.2020.02.243
- Perrine, K. A., Levin, M. W., Yahia, C. N., Duell, M., Boyles, S. D. (2019). Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transportation Research Part A: Policy and Practice, 120, 58–70. https://doi.org/10.1016/j.tra.2018.12.009
- Promyslov, V. G., Semenkov, K. V., Shumov, A. S. (2019). A Clustering Method of Asset Cybersecurity Classification. IFAC-PapersOnLine, 52 (13), 928–933. https://doi.org/10.1016/j.ifacol.2019.11.313
- Zarreh, A., Saygin, C., Wan, H., Lee, Y., Bracho, A. (2018). A game theory based cybersecurity assessment model for advanced manufacturing systems. Procedia Manufacturing, 26, 1255–1264. https://doi.org/10.1016/j.promfg.2018.07.162
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
- Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. https://doi.org/10.15587/1729-4061.2022.268621
- Shyshatskyi, A. (Ed.) (2024). Information and control systems: modelling and optimizations. Kharkiv: TECHNOLOGY CENTER PC, 180. https://doi.org/10.15587/978-617-8360-04-7
- Voznytsia, A., Sharonova, N., Babenko, V., Ostapchuk, V., Neronov, S., Feoktystov, S. et al. (2025). Development of methods for intelligent assessment of parameters in decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (4 (136)), 73–82. https://doi.org/10.15587/1729-4061.2025.337528
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrii Shyshatskyi, Yurii Zhuravskyi, Ganna Plekhova, Igor Shostak, Olena Feoktystova, Oksana Dmytriieva, Ivan Starynskyi, Andrii Strepetov, Serhii Rudoi, Anton Zakharov

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





