Rationale for the type of the membership function of fuzzy parameters of locomotive intelligent control systems
DOI:
https://doi.org/10.15587/1729-4061.2015.35996Keywords:
train control, fuzzy number, locomotive crew, membership functionAbstract
Presentation of the train speed as a fuzzy number is justified by the impossibility to accurately predict this value. This is caused by deviation of many train and locomotive parameters in operating conditions. According to statistics, the actual train speed is different from the design speed by up to 5 km/h. According to the distribution of the speed deviation from the design value, a hypothesis about using t- and π-class membership functions was proposed. It was found that with the fuzziness coefficient values less than 2, it is necessary to use the triangular activation function to present the fuzzy variables. If the fuzziness coefficients are greater than 2, it is reasonable to use both classes of membership functions. This will allow to apply artificial intelligence theory methods in modeling the decision support system for locomotive crews.
References
- Gorobchenko, O. M. (2014). Metodologіchnі osnovi pobudovi іntelektual'nih sistem pіdtrimki prijnyattya rіshen' dlya lokomotivnih brigad. Mezhdunarodnyj informacionnyj nauchno-tekhnicheskij zhurnal "Lokomotiv-inform", 8, 12–13.
- Jiang, C., Yang, J., Yuan, J., Xu, F. (2012). Overview of Intelligent Railway Transportation Systems in China. Intelligent Automation & Soft Computing, 18 (6), 627–634. doi:10.1080/10798587.2012.10643272
- But'ko, T. V., Prohorchenko, A. V. (2007). Udoskonalennya sistemi operativnogo upravlіnnya pasazhirs'kimi perevezennyami na osnovі vikoristannya іntelektual'nih tekhnologіj. Suchasnі іnformacіjnі tekhnologії na transportі, v promislovostі ta osvіtі. Dnіpropetrovs'k:DNUZT, 55.
- Gapanovich, V. A., Rozenberg, E. N. (2011). Osnovnye napravleniya razvitiya intellektual'nogo zheleznodorozhnogo transporta Zheleznodorozhnyj transport, 4, 5–11.
- Rozenberg, E. N. (2011). Sovremennye tekhnologii dlya perekhoda k intellektual'nomu zheleznodorozhnomu transportu». Vsemirnyj ehlektrotekhnicheskij kongresse (VEHLK-2011). Moscow. Available at: http://www.ruscable.ru/print.html?p=/article/Sovremennye_texnologii_dlya_perexoda_k/
- Intelligent Transport Systems (ITS) for sustainable mobility (2012). UN, Economic Commission for Europe, UNECE. Geneva, 120.
- Tarasov, V. A. Gerasimov, B. M., Levin, I. A., Kornejchuk, V. A. (2007). Intellektual'nye sistemy podderzhki prinyatiya reshenij. Teoriya, sintez, ehffektivnost'. Kiev: MAKNS, 336.
- Mitaim, S., Kosko, B. (2001). The shape of fuzzy sets in adaptive function approximation. IEEE Trans. Fuzzy Syst., 9 (4), 637–656. doi:10.1109/91.940974
- Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika: monogr. Kharkiv: Parus, 352.
- Demin, D. A. (2013). Nechetkaya klasterizaciya v zadache postroenie modelej «sostav – svojstvo» po dannym passivnogo ehksperimenta v usloviyah neopredelyonnosti. Problemy mashinostroeniya, 6, 15–23.
- Danilova, N. V. (2010). Primenenie metoda nechetkih srednih dlya postroeniya funkcij prinadlezhnosti parametrov tekhnologicheskogo processa. Innovacionnye tekhnologii, modelirovanie i avtomatizaciya v metallurgii. Sankt-Peterburg, 11–12.
- Dzharratano Dzh., Rajli, G. (2007). Ekspertnye sistemy: principy razrabotki i programmirovanie. Moscow: OOO "I.D.Vil'yams", 1152.
- Rutkovskaya, D. Pilin'skij, M., Rutkovskij, L. (2006). Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy M.: Goryachaya liniya –Telekom, 452.
- Gorobchenko, O. M. (2014). Modelyuvannya viniknennya neshtatnoї situacії v ergatichnіj sistemі «lokomotivna brigada – poїzd», 38, 144–147.
- Osipov, S. I., Mironov, K. A., Revich, V. I. (1972). Osnovy lokomotivnoj tyagi. Moscow: Transport, 336.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Тетяна Василівна Бутько, Олександр Борисович Бабанін, Олександр Миколайович Горобченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.