Phase equilibria of nitrobenzene – n-heptane system with TiO2 nanoparticle additives

Authors

  • Сергей Викторович Артеменко Odessa national academy of food technology 1/3 Dvorianskaya St., 65082 Odessa, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.36752

Keywords:

nanofluid, liquid-liquid equilibrium, critical lines, nitrobenzene, heptane, titanium dioxide

Abstract

Phase behavior of nitrobenzene - n-heptane system under the influence of titanium dioxide nanoparticle additives was considered in the paper. Based on limited experimental data, parameters of one-fluid Peng-Robinson models for a binary mixture were recovered and evaluation of the phase equilibrium shift lines and critical parameters of a binary mixture with titanium oxide nanoparticle additives was performed. At low concentrations of nanoparticles, the II type of phase behavior, for example, of the system under consideration, does not undergo any changes. Recovered cross interaction parameters have allowed to calculate phase equilibria for the base system and predict the phase behavior of nanofluid in a wide range of temperatures and pressures. The shift of the liquid phase separation lines, final critical point and critical lines of the mixture with the titanium oxide nanoparticle additives was first evaluated.

Author Biography

Сергей Викторович Артеменко, Odessa national academy of food technology 1/3 Dvorianskaya St., 65082 Odessa, Ukraine

Dr. Sc., senior researcher, professor

Chair of information systems and networks 

References

  1. Maxwell, J. A. (1891). Treatise on Electricity and Magnetism, London : Oxford university press. Reprinted by Dover Publications, New York (1954)., 560.
  2. Happel, J. (1958). Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles. AIChE Journal, 4 (2), 197–201. doi:10.1002/aic.690040214
  3. Hamilton, R. L., Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1 (3), 187–191. doi:10.1021/i160003a005
  4. Ahuja, A. S. (1975). Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. Journal of Applied Physics, 46 (8), 3408–3416. doi:10.1063/1.322107
  5. Das, S. K., Choi, S. U. S., Yu, W., Pradeep T. (2007). Nanofluids: science and Technology, New Jersey: Wiley, 146.
  6. Choi, S. U. S., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles, in Proc. of International Mechanical Engineering Congress and Exhibition, San Francisco, CA, 12–17.
  7. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78 (6), 718–720. doi:10.1063/1.1341218
  8. Lee, J.-H., Lee, S.-H., Choi, C. J., Jang, S. P., Choi, S. U. S. (2010). A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids. International Journal of Micro-Nano Scale Transport, 1 (4), 269–322. doi:10.1260/1759-3093.1.4.269
  9. Özerinç, S., Kakaç, S., Yazıcıoğlu, A. G. (2009). Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid, 8 (2), 145–170. doi:10.1007/s10404-009-0524-4
  10. Bakaeva, Z., Černoch, P., Štěpánek, P., Nallet, F., Noirez, L. (2013). Critical behavior of nanoparticle-containing binary liquid mixtures. Physical Chemistry Chemical Physics, 15 (16), 5831–5835. doi:10.1039/c3cp44052d
  11. Yu, W., Xie, H. (2012). A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, 2012, 1–17. doi:10.1155/2012/435873
  12. Konynenburg, P. H. V., Scott, R. L. (1980). Critical Lines and Phase Equilibria in Binary Van Der Waals Mixtures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 298 (1442), 495–540. doi:10.1098/rsta.1980.0266
  13. Nishigaki, K. (1978). Ultrasonic Study of Critical Mixing of n-Heptane and Nitrobenzene. Journal of the Physical Society of Japan, 45 (1), 182–190. doi:10.1143/jpsj.45.182
  14. Fameli, N., Balzarini, D. (2007). Coexistence curve of the n-heptane+nitrobenzene mixture near its consolute point measured by an optical method. Physical Review B, 75 (6), 064203–064212. doi:10.1103/physrevb.75.064203
  15. Borzenkov, P. V., Zheleznyj, V. P. (2014). Vlijanie nanochastic na parametry fazovyh ravnovesij zhidkost' – zhidkost'. Part 1, Holodil'na tehnіka ta tehnologіja, 6 (152), 4–9.
  16. Peng, D.-Y., Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15 (1), 59–64. doi:10.1021/i160057a011
  17. Mollerup, J. M., Michelsen, M. L. (1992). Calculation of thermodynamic equilibrium properties. Fluid Phase Equilibria, 74, 1–15. doi:10.1016/0378-3812(92)85049-e

Published

2015-02-24

How to Cite

Артеменко, С. В. (2015). Phase equilibria of nitrobenzene – n-heptane system with TiO2 nanoparticle additives. Eastern-European Journal of Enterprise Technologies, 1(6 (73), 4–8. https://doi.org/10.15587/1729-4061.2015.36752