Models of operating asynchronous engines at poor-quality electricity

Authors

  • Виталий Вадимович Кузнецов National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005, Ukraine
  • Анатолий Васильевич Николенко National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.36755

Keywords:

mathematical model, asynchronous engine, electricity quality, electromechanical transducer, voltage

Abstract

The paper considers operation of asynchronous squirrel-cage engines in conditions of poor-quality electricity since even slight deviations in the quality of voltage supply lead to negative consequences. We presume that solution of the problem requires a unified mathematical model. The model would facilitate analysis of energy efficiency for asynchronous squirrel-cage engines in the established conditions and with different quality indices for the network electricity. We have formulated requirements to the type, functionality, characteristics, and composition of input values that an asynchronous engine model would meet. We have analyzed the existing mathematical models of asynchronous engines operating in the above mentioned conditions. The revealed models reflect the impact of particular indices of voltage supply quality upon the operation of the electromechanical transducer.

On the basis of the analyzed mathematical analogues of asynchronous squirrel-cage engines, we presume that there is no unified model to evaluate energy efficiency of an electric machine operating in conditions of poor-quality electricity. Nevertheless, there exist models that reflect the impact of particular indices of voltage supply quality upon the operation of the electromechanical transducer. Solution of the existing problems requires devising an imitation model of an asynchronous squirrel-cage engine. Meanwhile, the elements of the considered models, whose connection permits simultaneous accounting of all electricity quality indices, should be used as computational units.

Author Biographies

Виталий Вадимович Кузнецов, National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005

Associate professor, Candidate of technical science

Department of the electrical engineering and electromechanic

Анатолий Васильевич Николенко, National Metallurgical Academy of Ukraine Gagarina 4, Dnepropetrovsk, Ukraine, 49005

Associate professor, Candidate of technical science

Department of the electrical engineering and electromechanic

References

  1. Pedra, J. (2006). Estimation of typical squirrel-cage induction motor parameters for dynamic performance simulation. IEE Proc., Gener. Transm. Distrib., 153 (2), 137. doi:10.1049/ip-gtd:20045209
  2. Krishnan, R. (2010). Electric Motor Drives – Modeling, Analysis and Control. PHI Learning Private Limited, New Delhi, 626
  3. Kirtley, J. L. (2005). 6.685 Electric Machines. Massachusetts Institute of Technology : MIT OpenCourseWare
  4. Chapman, S. J. (2005). Electric Machinery Fundamentals. Fourth Ed. Mc Graw Hill New York, USA, 737.
  5. Hachicha, M. R., Ben Hadj, N., Ghariani, M., Neji, R. (2012). Finite element method for induction machine parameters identification. 2012 First International Conference on Renewable Energies and Vehicular Technology, 490–496. doi:10.1109/revet.2012.6195318
  6. Gmiden, M. H., Trabelsi, H. (2009). Calculation of two-axis induction motor model using Finite Elements with coupled circuit. 2009 6th International Multi-Conference on Systems, Signals and Devices, 1–6. doi:10.1109/ssd.2009.4956785
  7. Bhattacharjee, S. (2012). A modified scalar control strategy of an induction motor with applications in traction. IAEME Intl. J. Elec. Engg. Tech. (IJEET), 3 (2), 394–404.
  8. Kopylov, I. P. (1994). Matematicheskoe modelirovanie elektricheskix mashin. Moscow: Energiya, 317.
  9. Kopylov, I. P. (2001). Matematicheskoe modelirovanie elektricheskix mashin. Moscow: Nauka, 327.
  10. Kovach, K., Rac, I. (1963). Perexodnye processy v mashinax peremennogo toka. Moscow-Lviv: Gosenergoizdat, 744.
  11. Nikiyan, N. G. (2006). Ot matematicheskoj modeli realnoj elektricheskoj mashiny k ee dopustimoj nagruzke. Vestnik Orenburgskogo gosuniversiteta, 2 (1), 121–127.
  12. Nikiyan, N. G. (2000). Matematicheskie modeli trexfaznyx asinxronnyx mashin s uchetom texnologicheskix i ekspluatacionnyx otklonenij. Vestnik Orenburgskogo gosuniversiteta, 1, 59–64.
  13. Kalіnov, A. P., Mamchur, D. G. (2007). Matematichnі modelі dlya doslіdzhennya vplivu konstruktivnix nesimetrіj elektrichnix mashin na їx elektromagnіtnі parametri. Vіsnik KDPU, 3, Part 2, 150–154.
  14. Chernyj, A. P., Kalinov, A. P., Kirichkov, V. A. (2007). Ocenka kachestva preobrazovaniya energii v elektricheskix mashinax s uchetom parametrov pitayushhego napryazheniya. Vіsnik KDPU, 4, Part 1, 67–69.
  15. Rodkin, D. I., Zdor, I. N., Prus, V. V. (2000). Opredelenie posleremontnoj pasportnoj moshhnosti asinxronnogo dvigatelya s korotkozamknutym rotorom. Problemy sozdaniya novyx mashin i texnologij. Sb. nauchnyx trudov KGPI, 1. Kremenchug: KGPI, 65–71.
  16. Rodkin, D. I., Mospan, V. A. (2000). Ekvivalentizaciya poter asinxronnyx dvigatelej pri dinamicheskom nagruzhenii. Problemy sozdaniya novyx mashin i texnologij. Sb. nauchnyx trudov KGPI, 1, 96–107.
  17. Rodkin, D. I., Zdor, I. V. (1998). Sovremennye metody opredeleniya parametrov asinxronnyx dvigatelej posle ix remonta. Problemy sozdaniya novyx mashin i texnologij. Sb. nauchnyx trudov KGPI, 1, 106–117.
  18. Rodkin, D. I., Romashixin, Yu. V. (2007). Vozmozhnosti i effektivnost metoda energodiagnostiki v identifikacionnyx zadachax. Sbornik nauchnyx trudov Dneprodzerzhinskogo gosudarstvennogo texnicheskogo universiteta. Dneprodzerzhinsk: DGTU, 507–512.
  19. Rodkin, D. I., Zdor, I. E. (2001). Osobennosti opredeleniya parametrov sxemy zameshheniya asinxronnogo dvigatelya pri pitanii ot trexprovodnoj linii. Nauchnye trudy KGPU, 1, 212–216.
  20. Rodkin, D. I. (2000). O preobrazovanii energii v elektromexanicheskix sistemax. Nauchnye trudy KGPU, 2, 106–111.
  21. Kovalev, E. B., Tolochko, O. I., Chekavskij, G. S. (2000). Matematicheskoe modelirovanie asinxronnogo dvigatelya pri kompensacii reaktivnoj moshhnosti s pomoshhyu staticheskix kondensatorov. Nauchnye trudy KGPU, 2, 287–294.
  22. Vojnova, T. V. (1998). Matematicheskaya model dlya issledovaniya trexfaznogo asinxronnogo dvigatelya s korotkozamknutym rotorom kak obekta regulirovaniya im dlya pryamogo processornogo upravleniya. Elektrotexnika, 6, 51–61.
  23. Vojnova, T. V. (2000). Programmnoe obespechenie dlya modelirovaniya trexfaznogo asinxronnogo dvigatelya s korotkozamknutym rotorom v sostave sistemy upravleniya elektroprivodami i dlya bezdatchikovogo izmereniya reguliruemyx peremennyx. Elektrotexnika, 1, 19–25.
  24. Bespalov, V. Ya., Moshhinskij, Yu. A., Petrov, A. P. (2000). Dinamicheskie pokazateli trexfaznyx asinxronnyx dvigatelej, vklyuchaemyx v odnofaznuyu set. Elektrotexnika, 1, 13–19.
  25. Petrov, L. P. et. al. (1977). Modelirovanie asinxronnyx elektroprivodov s tiristornym upravleniem. Moscow: Energiya, 300.
  26. Petrov, L. P. et. al. (1970). Asinxronnyj elektroprivod s tiristornymi kommutatorami. Moscow: Energiya, 277.
  27. Petrov, L. P., Xeruncev, P. E. (1991). Avtomatizirovannoe modelirovanie elektroprivodov na cifrovyx vychislitelnyx mashinax. Kiev: UMK VO, 158.
  28. Ivanov-Smolenskij, A. V. (1980). Elektricheskie mashiny. Moscow: Energiya, 927.
  29. Kopylov, I. P., Shhedrin, O. P. (1973). Raschet na CVM xarakteristik asinxronnyx mashin. Moscow: Energiya, 212.

Published

2015-02-23

How to Cite

Кузнецов, В. В., & Николенко, А. В. (2015). Models of operating asynchronous engines at poor-quality electricity. Eastern-European Journal of Enterprise Technologies, 1(8(73), 37–42. https://doi.org/10.15587/1729-4061.2015.36755

Issue

Section

Energy-saving technologies and equipment