Influence of microwave electromagnetic treatment on properties of epoxy composites

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.36978

Keywords:

oligomer, polyethylenepolyamine, composite, adhesive strength, residual stresses, dispersed filler

Abstract

Epoxy oligomers, containing reactive epoxy and hydroxyl groups, are widely used as binders to form composite materials (CM) with high performance. Improving the physical and mechanical properties, including adhesive strength and residual stresses of CM for protective coatings on their basis is achieved by introducing dispersed mineral fillers of different physical nature to the epoxy binder at the optimal content and external physical field treatment. Research on using electro-physical treatment methods of materials and products have shown the efficiency of using the power of the microwave (MW) electromagnetic (EM) oscillations.

The purpose of the paper is to determine the influence of the nature and content of the coarsely dispersed fillers in epoxy material on the adhesive strength and residual stresses in combination with their microwave electromagnetic treatment.

A study of the adhesive strength of plasticized epoxy binder after the MW electromagnetic field treatment before introducing a hardener was performed. It was first found that the best time of MW electromagnetic field treatment of plasticized epoxy matrix is 30 seconds, which leads to the maximized adhesive strength by 35 % due to improved cross-linking, caused by forming free radicals that interact intensively with hydroxyl centers on the metal base surface. It was proved that introducing coarsely dispersed fillers in the polymer matrix, followed by MW electromagnetic treatment allows to improve physical and mechanical properties of epoxy composites. It was revealed that composite materials, filled with SiC and B4C exposed to MW electromagnetic field within 60 seconds have the maximum adhesion characteristics. Introducing such fillers allows to further increase the adhesive strength by 25 % and 12 %, respectively, compared with the unfilled epoxy matrix.

Author Biographies

Петро Данилович Стухляк, Ternopil National Technical University im.I.Pulyuya. Ruska str., 56, Ternopil, Ukraine, 46001

Doctor of Technical Sciences, Professor

Computer-Integrated Technologies

Олександр Сергійович Голотенко, Ternopil National Technical University im.I.Pulyuya. Ruska str., 56, Ternopil, Ukraine, 46001

Assistant

Computer-Integrated Technologies

Олександр Зосимович Скороход, Gomel Engineering Institute MOE Belarus Mashynostroyteley str. , 25, Minsk, Belarus, 220 118

PhD

References

  1. Kerber, M. L. Vinogradov, V. M. Golovkin, G. S. (2008). Polimernye kompozitsionnye materialy: struktura, svoystva, tekhnologiya. SPb: Profesiya, 560.
  2. Xantos, M. (2010). Functional fillers for plastics, 2nd edition. Weinhem: Wiley-VCH, 531.
  3. Stukhlyak, P. D., Buketov, A. V., Dobrotvor, I. G. (2008). Epoksykompozytni materialy, modyfikovani energetychnymy polyamy. Ternopil: Zbruch, 208.
  4. Mehdizadeh, M. (2004). Microwave/RF methods for detection and drying of residual waterin polymers. Proceedings of the Fourth World Congress on Microwave and Radio Frequency Applications. Austin, Texas, 32.
  5. Mykhaylyshyn, Y. A. (2009). Spetsyalnye polimernye kompozitsyonnye materialy. SPb: Nauchnye osnovy i tekhnologii, 660.
  6. Bogdanova, Y. G. (2010). Adgeziya i yeyo rol’ v obespichenii prochnosti polimernykh kompozitov. Moscow: Nauchno-obrazovatelnyy tsentr po nanotekhnologiyam, 68.
  7. Kadyrin, L. B. (2000). Issledovanie mekhanicheskikh svoystv napolnenykh kompozitsiy i polibetonov na osnove smesey furanovykh i epoksidnykh smol. Plast.massy, (7), 33–34.
  8. Savchuk, P. P., Kastornov, A. G. (2009). Struktura ta funktsional’ni vlastyvosti epoksydnykh komposytiv, napovnenykh vysokodyspernymy chastynkamy. Poroshkova metalurgiya, 9/10, 81–87.
  9. Fedorov, V. V., Bilyj, L. M. (2006). Doslidzhennya vplyvu pryrody napovnyuvachiv na reologichni vlastyvosti epoksydnikh kopozytsiy. Naukovi notatky, 17, 406–411.
  10. Zubov, P. I., Sukhareva, L. A. (1982). Struktura I svoystva polimernykh pokrytiy. Moscow: Khimiya, 256.
  11. Varga, Cs., Miskolczi, N., Bartha, L. et al. (2010). Modification of the mechanical properties of rubbers by introducing recycled rubber into the original mixture. Global NEST Journal, 12 (4), 352–358.
  12. Gunaratne, R. D., Day, R. J. (2004). Microwave and conventional mechanical & thermal analysis of the reactions in epoxy vinyl ester resins. Proceedings of the Fourth World Congress on Microwave and Radio Frequency Applications. Austin, Texas, 39.
  13. Feldman, N. Y. (2009). Osobennosti provedeniya termicheskikh protsessov v SVCH-elektromagnitnom pole. Sovremennaya elektronika, 5, 64–67.
  14. Kalganova, S. G. (2009). Elektrotekhnologiya neteplovoy modifikastyy polimernykh materialov v SVCH elektromagnitnom pole. Avtoreferat disertatsyy doktora tekhnicheskikh nauk, 34.
  15. Kablov, V. F., Keybal, N. A., Provotorova, D. A., Mitchenko, A. E. (2014). Vliyanie mikrovolnovogo izlucheniya na prochnosnye svoystva elastomernykh kompozitsyj na osnove nepredelnykh kauchukov. Sovremennye problem nauki I obrazovaniya, 5.
  16. Buketov, A. V., Stukhlyak, P. D. Kalba, Y. M. (2005). Fizyko-khimichni protsesy pry formuvanni epoksykompozytnykh materialiv. Ternopil: Zbruch, 182.
  17. Zhou, J., Shi, C., Mei, B., Yuan, R., Fu, Z. (2003). Research on the technology and the mechanical properties of the microwave processing of polymer. Journal of Materials Processing Technology, 137 (1-3), 156–158. doi:10.1016/s0924-0136(02)01082-8
  18. Yue, C. Y., Looi, H. C. (1995). Influence of thermal and microwave processing on the mechanical and interfacial properties of a glass/epoxy composite. Composites, 26 (11), 767–773. doi:10.1016/0010-4361(95)98197-s
  19. Chaowasakoo, T., Sombatsompop, N. (2007). Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods. Composites Science and Technology, 67 (11-12), 2282–2291. doi:10.1016/j.compscitech.2007.01.016

Published

2015-02-26

How to Cite

Стухляк, П. Д., Голотенко, О. С., & Скороход, О. З. (2015). Influence of microwave electromagnetic treatment on properties of epoxy composites. Eastern-European Journal of Enterprise Technologies, 1(5(73), 32–37. https://doi.org/10.15587/1729-4061.2015.36978